北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题
展开
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题,共22页。试卷主要包含了如果x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是( ).A. B. C. D.2、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.3、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A.6台 B.7台 C.8台 D.9台4、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为( )A.6 B.8 C.10 D.125、如果x:y=3:2,并且x+3y=27,则x与y中较小的值是( ).A.3 B.6 C.9 D.126、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )A.1,0 B.0,﹣1 C.2,1 D.2,﹣37、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )A.2 B.1 C. D.08、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( ) ﹣3y 1 4 x A.15 B.17 C.19 D.219、用代入法解方程组,以下各式正确的是( )A. B.C. D.10、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )A.-2 B.-1 C.2 D.1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙、丙三人到某单人小火锅就餐,该店共有种配菜可以选择,每种配菜都有大盘菜、中盘菜、小盘菜这三种分量,价格分别为元、元和元,,、都为正整数.每个人都选择了所有种配菜,而且对于每一种配菜,三个人在分量上的选择都各个相同,结账时,甲乙两人都花费了元且两个在大盘菜的花费上各不相同,而丙共花费了元,那么丙在大盘菜上花费_________元.2、节日将至,某水果店打算将红心猕猴桃、奉节脐橙、阿克苏糖心苹果以鲜果礼盒的方式进行销售.其中一个红心猕猴桃与一个阿克苏糖心苹果成本价之和为一个奉节脐橙的成本价的两倍,一个阿克苏糖心苹果与一个红心猕猴桃成本价之差的两倍等于一个奉节脐橙的成本价.商家打算将甲种鲜果礼盒装红心猕猴桃6个、奉节脐橙4个、阿克苏糖心苹果6个;乙种鲜果礼盒装红心猕猴桃8个、奉节脐橙4个、阿克苏糖心苹果6个;丙种鲜果礼盒装红心猕猴桃4个、奉节脐橙8个、阿克苏糖心苹果8个.已知每个鲜果礼盘的成本价定为各水果成本价之和,每个甲种鲜果礼盒在成本价的基础上提高之后进行销售,每个乙种鲜果礼盒的利润等于两个阿克苏糖心苹果的成本价,每个丙种鲜果礼盒的利润率和每个乙种鲜果礼盒时利润率相等.某单位元旦节发福利,准备给每个员工发一个鲜果礼盒.采购员向该水果店预订了80个甲种鲜果礼盒,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间.该水果店通过核算,此次订单的利润率为,则该单位一共有________名员工.3、某商铺去批发市场进货甲、乙、丙三种商品,商品甲、乙、丙的进货量之比为4:2:3,且均为整数.回到商铺后,将三种商品的进价标签混淆了(进价均为整数).若随机抽出两个标签,求出进价之和,再乘以购进商品甲的进货量,为2736元;若随机抽出两个标签,求出进价之和,再乘以购进商品乙的进货量,为1596元;若随机抽出两个标签,求出进价之和,再乘以购进商品丙的进货量,为1368元.则三种商品的进价按有小到大的比为__________.4、若x、y的值满足,,,则k的值等于________.5、已知关于x,y的二元一次方程3mx-y=-1有一组解是,则m的值是 ___.三、解答题(5小题,每小题10分,共计50分)1、解下列方程组:(1);(2).2、我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜4个,共需资金1500元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共30个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,请设计所有可行的购买方案供学校选择.3、解方程组:(1)(2)4、 “文明其精神,野蛮其体魄”,为进一步提升学生的健康水平,我市某校计划用760元购买14个体育用品,备选体育用品及单价如表:备选体育用品足球篮球排球单价(元)806040(1)若760元全部用来购买足球和排球,求足球和排球各购买的数量.(2)若该校先用一部分资金购买了a个排球,再用剩下的资金购买了足球和篮球,且篮球和足球的个数相同,此时正好剩余80元,求a的值.(3)由于篮球和排球都不够分配,该校再补充采购这两种球共花费了480元,其中这两种球都至少购进2个,则有几种补购方案?5、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪.已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元.(1)求紫外线消毒灯和体温检测仪的单价各为多少元;(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案? ---------参考答案-----------一、单选题1、A【分析】此题中的等量关系有:, ,根据等量关系列出方程即可.【详解】设∠ABD和∠DBC的度数分别为x°,y°,则有整理得:,故选:A.【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.2、A【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.3、B【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得,解得:,∵5ax=30a+5a,∴x=7.答:要同时开动7台机组.故选:B.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.4、D【分析】设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.【详解】解:设甲组人数为人,乙组人数为人,由题意得:,将①代入②得:,解得,即原来乙组的人数为12人,故选:D.【点睛】本题考查了二元一次方程组的应用,正确建立方程组是解题关键.5、B【分析】把x:y=3:2变形为x=y,联立解方程组即可.【详解】解:把x:y=3:2变形为:x=y.把x=y代入x+3y=27中:y=6.∴x=9.∴x、y中较小的是6.故选:B.【点睛】本题实质是解二元一次方程组,掌握代入消元法是解题的关键.6、C【分析】根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.【详解】解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,∴ ,解得:. 故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.7、D【分析】解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:,①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,∵x+2y=﹣1∴a+3+2(-2a-2)=-1,∴a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.8、D【分析】根据题意列出两条等式,求出x,y的值即可.【详解】根据题意可得: ,解得,x+2y=5+2×8=5+16=21,故答案为:D.【点睛】本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.9、B【分析】根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.【详解】解:由②得,代入①得,移项可得,故选B.【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键.10、C【分析】先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.【详解】解∵x=y,∴原方程组可变形为,解方程①得x=1,将代入②得,解得,故选C.【点睛】本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.二、填空题1、21【解析】【分析】由题意,三人各不相同,说明每一种菜的各类都被三人吃了,所以应是每一种菜品的总价的整数倍,即,根据题意求出整数解,推出,,或,,,设丙选了大盘菜份,中盘菜份,分两种情形分别构建方程求解即可.【详解】解:由题意,三人各不相同,说明每一种菜的各类都被三人吃了,所以应是每一种菜品的总价的整数倍,即,,、都为正整数,可知:,,或,,设丙选了大盘菜份,中盘菜份.由题意,,,(舍弃不合题意)或,(舍弃不合题意),或,,,,故答案为:21.【点睛】本题考查列代数式,二元一次方程的整数解等知识,理解题意,学会利用参数构建方程解决问题是解题的关键.2、140【解析】【分析】设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,然后由题意易得,则有甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,进而可得甲的利润为元,乙的利润为元,利润率为,丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,则根据“订单的利润率为”列出方程,最后根据“预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间”来求解即可.【详解】解:设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,由题意得:,解得:,∴甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,∴甲的利润为元,乙的利润为元,则有它的利润率为,进而可得丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,由题意得:,化简得:,∴,∵预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间,∴,即,解得:,∵m为正整数,∴m的值可能为36、37、38、39、40、41、42、43、44,∵n为正整数,∴是6的倍数,∴,∴该单位一共有80+40+20=140(名);故答案为140.【点睛】本题主要考查三元一次方程组的应用及一元一次不等式的应用,熟练掌握利用消元思想及不定方程的求解方法是解题的关键.3、3:5:9【解析】【分析】由题意设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,继而依据进货量均为整数,进价均为整数得出三种商品的进价后即可得出答案.【详解】解:设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,则随机抽出两个标签进价之和可知:,由题意可得第一次抽出两个标签进价之和为:,第二次抽出两个标签进价之和为:,第三次抽出两个标签进价之和为:,又因为,所以< < ,即第一、二、三次抽出两个标签进价之和分别为:a+c、b+c、a+b,进而可得, ①+②+③得出,且,进货量均为整数,进价均为整数可得,则有,解得:,所以三种商品的进价按有小到大的比为:.故答案为:3:5:9.【点睛】本题考查不定方程的应用,读懂题意根据题意列出方程并利用消元思维进行分析是解题的关键.4、-4【解析】【分析】由题意可联立方程组,由①②可解出、的值,代入③即可得出答案.【详解】由题意可得:,①×3+②得:,解得:,代入①得:,将,,代入③得,,解得.【点睛】本题考查解二元一次方程组,掌握把k看作常数,熟练掌握二元一次方程组的解法是解题的关键.5、-1【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把代入方程3mx-y=-1中得:3m+2=-1,解得:m=-1.故答案为:-1.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.三、解答题1、(1);(2)【分析】(1)根据代入消元法计算即可;(2)根据加减消元法计算即可;【详解】解:(1),把①代入②中,得到,解得:,把代入①中,得:,∴方程组的解集为;(2),得:,解得:,把代入②中,得:,∴方程组的解为.【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.2、(1)甲、乙两种书柜每个的价格分别为元,元;(2)第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【分析】(1)设甲、乙两种书柜每个的价格分别为元,元,再根据甲种书柜3个、乙种书柜4个,共需资金1500元;甲种书柜4个,乙种书柜3个,共需资金1440元,列方程组,再解方程组即可得到答案;(2)设计划购进甲种书柜个,则购进乙种书柜个,根据乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,列不等式组,再解不等式组结合为正整数,从而可得答案.【详解】解:(1)设甲、乙两种书柜每个的价格分别为元,元,则 解得: 答:甲、乙两种书柜每个的价格分别为元,元.(2)设计划购进甲种书柜个,则购进乙种书柜个,则 由①得: 由②得:,所以: 又因为为正整数,或或 所以所有可行的购买方案为:第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式组的应用,设出合适的未知数,确定相等关系列方程组,确定不等关系列不等式组是解本题的关键.3、(1);(2)【分析】(1)方程组利用代入消元法求解即可; (2)方程组整理后,方程组利用加减消元法求解即可.【详解】(1)将①代入②得:去括号,合并同类项得:移项,系数化为1,解得:代入①中,解得:∴方程组的解为:;(2)方程②去分母得:,整理得:①×2得:③+④得:,解得:代入①得:∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.4、(1)足球购买5个、排球购买9个;(2)a的值为10;(3)则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【分析】(1)设购买足球x个和排球y个,根据两种球共14个,足球支出总钱数+排球支出总钱数=760元,列方程组,解方程组即可;(2)设篮球购买b个,篮球和足球的个数相同,足球购买b个,根据三种球共14个,排球支付的总钱数+足球支出总钱数+篮球球支出总钱数=760-80元,列方程组,解方程组即可;(3)设篮球购买m个和排球n个,根据篮球支出总钱数+排球支出总钱数=480元,列二元一次方程60m+40n=480求方程的整数解即可.【详解】解:(1)设购买足球x个和排球y个,根据题意得:,解得,答足球购买5个、排球购买9个;(2)设篮球购买b个,篮球和足球的个数相同,足球购买b个,根据题意得,解得,答a的值为10;(3)设篮球购买m个和排球n个,根据题意得60m+40n=480,整理得3m+2n=24,∵m≥2,n≥2,∴,当;,,则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【点睛】本题考查列二元一次方程组解应用题,掌握列方程组解应用题的步骤与方法,列二元一次方程,求整数解确定方案是解题关键.5、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案.【分析】(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于、的二元一次方程组,解方程组即可得出结论;(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可得出关于的一元一次不等式组,解不等式组即可得出结论.【详解】解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,则由题意得,解得.答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;(2)设购买紫外线消毒灯台,则购买体温检测仪个.,解得:,∵为正整数,∴该校有5种购买方案.【点睛】本题考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于、的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了解方程组的最好方法是等内容,欢迎下载使用。
这是一份数学七年级下册第五章 二元一次方程组综合与测试课堂检测,共18页。试卷主要包含了如果x,小明在解关于x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题,共19页。试卷主要包含了下列各式中是二元一次方程的是,如果与是同类项,那么的值是等内容,欢迎下载使用。