![精品试卷:京改版七年级数学下册第五章二元一次方程组定向测试试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12699109/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷:京改版七年级数学下册第五章二元一次方程组定向测试试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12699109/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷:京改版七年级数学下册第五章二元一次方程组定向测试试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12699109/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试测试题
展开这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试测试题,共21页。
京改版七年级数学下册第五章二元一次方程组定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A. B.
C. D.
2、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )
A.1,0 B.0,﹣1 C.2,1 D.2,﹣3
3、若是方程的解,则等于( )
A. B. C. D.
4、下列方程组中是三元一次方程组的是( ).
A. B.
C. D.
5、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )
A.4 B.3 C.2 D.1
6、已知方程,,有公共解,则的值为( ).
A.3 B.4 C.0 D.-1
7、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( )
﹣3 | y |
|
| 1 |
|
4 |
| x |
A.15 B.17 C.19 D.21
8、下列方程组中,不是二元一次方程组的是( ).
A. B. C. D.
9、《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系,其中卷八方程[七]中记载:“今有牛五,羊二,直金十两;牛二、羊五,直金八两,问牛、羊直金几何?”译文:“假设有5头牛,2只羊共值金10两;2头牛,5只羊共值金8两,问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,那么下面列出的方程组中正确的是( )
A. B. C. D.
10、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )
A.6或 B.2或6 C.2或 D.2或
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若方程是关于,的二元一次方程,则_______.
2、在第四个“中国农民丰收节”来临之际,中国邮政推出了“城市邮票”盲盒,盲盒内含不同丰收场景的邮票,其中A,B,C三种邮票最受消费者喜爱.故中国邮政准备加印这三种邮票单独售卖.A,B,C三种邮票分别加印各自原有数量的2倍,3倍,2倍.加印后,这三种邮票原有总数量占加印邮票总数量的,若印制A,B,C三种邮票的单张费用之比为3:2:15,且加印B邮票的总费用是加印三种邮票总费用的,则A邮票原有数量与三种邮票原有总数量之比为______________.
3、若是方程2x+y=10的解,求6a+3b﹣4的值是 ___.
4、已知方程是二元一次方程,则m=__,n=__.
5、购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需( )元.
三、解答题(5小题,每小题10分,共计50分)
1、某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)
(1)A,B两种树苗每棵的价格分别是多少元?
(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?
2、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.
(1)求购买一副跳棋和一副军棋各需要多少钱?
(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?
3、运输公司要把120吨物资从A地运往B地,有甲,乙,丙三种车型供选择,每种型号的车辆的运载量和运费如下表所示.(假设每辆车均满载)
车型 | 甲 | 乙 | 丙 |
运载量(吨/辆) | 5 | 8 | 10 |
运费(元/辆) | 450 | 600 | 700 |
解答下列问题:
(1)安排甲型车8辆,乙型车5辆,丙型车___________辆可将全部物资一次运完;
(2)若全部物资仅用甲、乙型车一次运完,需运费9600元,则甲、乙型车各需多少辆?
(3)若用甲、乙,丙型车共14辆同时参与运送,且一次运完全部物资,则三种型号的车各需多少辆?此时总运费为多少元?
4、某大型商场抓住商机购进A、B两款新童装进行销售,该商场用15000元购买了一定数量的A款童装和B款童装,且每件A款童装进价与每件B款童装进价均为150元,购买A款童装的数量的2倍比B款童装的数量多20件,若该商场本次以每件A款童装按进价加价100元进行销售,每件B款童装按进价加价60%进行销售,全部销售完,
(1)求购进A、B两款童装各多少件?
(2)春节期间该商场按上次进价又购进与上一次一样数量的A、B两款童装并展开了降价促销活动,在促销期间,该商场将每件A款童装按进价提高(m+10)%进行销售,每件B款童装按上次售价降低m%销售.结果全部销售完后销售利润比上次利润少了3040元,求m的值.
5、解方程组
(1)
(2)
---------参考答案-----------
一、单选题
1、B
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
2、C
【分析】
根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.
【详解】
解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,
∴ ,
解得:.
故选:C
【点睛】
本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.
3、B
【分析】
把代入到方程中得到关于k的方程,解方程即可得到答案.
【详解】
解:∵是方程的解,
∴,
∴,
故选B.
【点睛】
本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.
4、D
【分析】
三元一次方程组中共含有三个未知数,并且含未知数的项的次数都是1,每个方程都是整式方程,由此进行判断即可.
【详解】
解:A、a的最高次数是2,选项错误;
B、x、y、z的最高次数都是2,选项错误;
C、每个方程都是分式方程,选项错误;
D、符合题意,选项正确.
故选:D
【点睛】
本题考查三元一次方程组的识别,牢记定义是解题的切入点.
5、C
【分析】
先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.
【详解】
解:由题意得:,
联立,
由①②得:,
解得,
将代入①得:,
解得,
将代入方程得:,
解得,
故选:C.
【点睛】
本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.
6、B
【分析】
联立,,可得:,,将其代入,得值.
【详解】
,解得,
把代入中得:,
解得:.
故选:B.
【点睛】
本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.
7、D
【分析】
根据题意列出两条等式,求出x,y的值即可.
【详解】
根据题意可得:
,
解得,
x+2y=5+2×8=5+16=21,
故答案为:D.
【点睛】
本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.
8、B
【分析】
依据二元一次方程组的定义求解即可.
【详解】
利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;
方程组中,可以整理为所以C也符合;
B中含有三个未知数不符合二元一次方程组的定义.
故答案选B
【点睛】
本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.
9、A
【分析】
根据题意可直接进行求解.
【详解】
解:设每头牛值金x两,每只羊值金y两,由题意得:;
故选A.
【点睛】
本题主要考查二元一次方程组的应用,熟练掌握二元一次方程的应用是解题的关键.
10、A
【分析】
设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.
【详解】
解:∵ABCD是长方形,
∴∠A=∠B=90°,
∵点E为AD的中点,AD=8cm,
∴AE=4cm,
设点Q的运动速度为x cm/s,
①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,
,
解得,,
即点Q的运动速度cm/s时能使两三角形全等.
②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,
,
解得:,
即点Q的运动速度6cm/s时能使两三角形全等.
综上所述,点Q的运动速度或6cm/s时能使两三角形全等.
故选:A.
【点睛】
本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.
二、填空题
1、-1
【解析】
【分析】
根据 二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程,求出,的值即可得出答案.
【详解】
解:方程是关于,的二元一次方程,
,
,
,
故答案为:.
【点睛】
本题考查了二元一次方程的概念以及有理数的乘方运算,根据二元一次方程的概念得出,的值是解本题的关键.
2、##7:12
【解析】
【分析】
设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,依题意列出方程组,求解即可.
【详解】
解:设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,
由题意得:,
由②得:,即③;
把③代入①得:,
整理得:,即,
把代入③得:,
∵A邮票原有数量与三种邮票原有总数量之比为,
∴,
∴A邮票原有数量与三种邮票原有总数量之比为,
故答案为:.
【点睛】
本题主要考查了列三元一次方程组的应用,列代数式,求代数式的值,关键是正确设元,并列出方程组.
3、26
【解析】
【分析】
先代入求出2a+b=10,再变形,最后代入求出即可.
【详解】
解:∵是方程2x+y=10的解,
∴2a+b=10,
∴6a+3b−4
=3(2a+b)−4
=3×10−4
=26.
故答案为:26.
【点睛】
本题考查了二元一次方程的解和求代数式的值的应用,用了整体代入思想.
4、 -2 ##0.25
【解析】
【分析】
根据二元一次方程的定义得到:,.据此可以求得、的值.
【详解】
解:方程是二元一次方程,
,,
解得,.
故答案是:;.
【点睛】
本题考查了二元一次方程的定义.解题的关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
5、5
【解析】
【分析】
假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元,购买铅笔11支、作业本5本圆珠笔2支共需a元,由题意列出方程组,解方程组求出a的值,即为所求结果.
【详解】
解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.
则由题意得:
,
由得:,④
由得:,⑤
由得:,
解得:.
故答案为:5
【点睛】
本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.
三、解答题
1、(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.
【分析】
(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;
(2)根据(1)所求得结果进行求解即可.
【详解】
解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,
根据题意得:,
解得:,
答:A种树苗每棵的价格40元,B种树苗每棵的价格10元;
(2)=1140元。
答:总费用需1140元.
【点睛】
本题考查二元一次方程组的应用,正确理解题意列出方程求解是解题的关键.
2、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋
【分析】
(1)设购买一副跳棋和一副军棋各需要x元、y元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;
(2)设购买m副军棋,则购买副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.
【详解】
解:(1)设购买一副跳棋和一副军棋各需要x元、y元,
由题意得:,
解得,
∴购买一副跳棋和一副军棋各需要6元、10元,
答:购买一副跳棋和一副军棋各需要6元、10元;
(2)设购买m副军棋,则购买副跳棋,
由题意得:,即,
解得,
∴学校最多可以买30副军棋,
答:学校最多可以买30副军棋.
【点睛】
本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.
3、(1)4;(2)需要甲型车8辆,乙型车10辆;(3)需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元.
【分析】
(1)根据三种车型的运载量列出式子,计算乘除法与减法即可得;
(2)设需要甲型车辆,乙型车辆,根据“120吨物资”和“运费9600元”建立方程组,解方程组即可得;
(3)设需要甲型车辆,乙型车辆,从而可得需要丙型车辆,再根据“一次运完全部物资”建立关于的等式,结合为正整数进行分析即可得.
【详解】
解:(1),
,
,
(辆),
即安排甲型车8辆,乙型车5辆,丙型车4辆可将全部物资-次运完,
故答案为:4;
(2)设需要甲型车辆,乙型车辆,
由题意得:,
解得,符合题意,
答:需要甲型车8辆,乙型车10辆;
(3)设需要甲型车辆,乙型车辆,则需要丙型车辆,
由题意得:,
整理得:,
则,
均为正整数,
只能等于5,
,,
此时总运费为(元),
答:需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元.
【点睛】
本题考查了二元一次方程组的应用等知识点,正确建立方程组是解题关键.
4、(1)购进A款童装40件,B款童装60件;(2)
【分析】
(1)设购进A款童装x件,B款童装y件,则根据“该商场用15000元购买了一定数量的A款童装和B款童装”及“购买A款童装的数量的2倍比B款童装的数量多20件”可列出方程组进行求解;
(2)由题意易得上次A款童装的利润为4000元,B款童装的利润为5400元,然后根据“该商场将每件A款童装按进价提高(m+10)%进行销售,每件B款童装按上次售价降低m%销售.结果全部销售完后销售利润比上次利润少了3040元”可列方程进行求解.
【详解】
解:(1)设购进A款童装x件,B款童装y件,由题意得:
,
解得:,
答:购进A款童装40件,B款童装60件;
(2)由(1)及题意可得:上次A款童装的利润为100×40=4000元,B款童装的利润为60×150×60%=5400元,即总利润为4000+5400=9400元,
∴,
解得:.
【点睛】
本题主要考查二元一次方程组的应用,解题的关键是找准题干中的等量关系.
5、(1);(2)
【分析】
(1)先将两个方程相减求解 再求解即可;
(2)把看作整体未知数,可得,,再利用加减消元法可得答案.
【详解】
解:(1)
①-②得:
解得:
把代入②得:
所以方程组的解为:;
(2)
由②得:③
①-③得:
解得:④
把④代入①得:⑤
④+⑤得:
把代入④得:
所以方程组的解为:
【点睛】
本题考查的是利用加减消元法解二元一次方程组,把看作的整体未知数是解(2)中方程组的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题,共23页。试卷主要包含了设m为整数,若方程组的解x,下列方程是二元一次方程的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共18页。试卷主要包含了已知是方程的解,则k的值为,有铅笔,已知方程组中,x等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共26页。试卷主要包含了下列命题,直线,若的余角为,则的补角为,若∠α=55°,则∠α的余角是,如图等内容,欢迎下载使用。