初中数学第五章 二元一次方程组综合与测试练习题
展开这是一份初中数学第五章 二元一次方程组综合与测试练习题,共18页。试卷主要包含了用代入消元法解关于,若方程组的解为,则方程组的解为,如果x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、解方程组的最好方法是( )
A.由①得再代入② B.由②得再代入①
C.由①得再代入② D.由②得再代入①
2、为迎接2022年北京冬奧会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )
A.2种 B.3种 C.4种 D.5种
3、已知是二元一次方程的一组解,则m的值是( )
A. B.3 C. D.
4、用代入消元法解关于、的方程组时,代入正确的是( )
A. B.
C. D.
5、若方程组的解为,则方程组的解为( )
A. B.
C. D.
6、用代入法解方程组,以下各式正确的是( )
A. B.
C. D.
7、如果x:y=3:2,并且x+3y=27,则x与y中较小的值是( ).
A.3 B.6 C.9 D.12
8、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48 B.52 C.58 D.64
9、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )
A.4 B.3 C.2 D.1
10、下列方程组为二元一次方程组的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果与的和是单项式, 则________ .
2、已知关于x的方程=1+中,a、b、k为常数,若无论k为何值,方程的解总是x=1,则a+b的值为 ___.
3、若方程组的解满足2x﹣3y>1,则k的的取值范围为 ___.
4、已知是二元一次方程组的解,则mn的相反数为______.
5、关于x、y的方程组的解也是方程的解,则m的值为____.
三、解答题(5小题,每小题10分,共计50分)
1、任意一个三位自然数m,如果满足百位上的数字小于十位上的数字,其百位上的数字与十位上的数字之和等于个位上的数字,则称m为“进步数”.如果在一个“进步数”m的末尾添加其十位上的数字的2倍,恰好得到一个四位数m',则称m'为m的“进步美好数”,并规定F(m)=.例如m=134是一个“进步数”,在134的末尾添加数字3×2=6,得到一个四位数m′=1346,则1346为134的“进步美好数”,F(134)==12.
(1)求F(123)和F(246)的值.
(2)设“进步数”m的百位上的数字为a,十位上的数字为b,规定K(m)=.若K(m)除以4恰好余3,求出所有的“进步数”m.
2、若关于x,y的方程组与的解相同,求a,b的值;
3、阅读下列解方程组的方法,然后回答问题.
解方程组
解:由①-②得即③,
③×16得④
②-④得,
把代入③得
解得:
原方程组的解是
请你仿照上面的解法解方程组.
4、在解方程组时,甲由于粗心看错了方程组中的a,求出方程组的解为,乙看错了方程组中的b,求得方程组的解为,甲把a看成了什么?乙把b看成了什么?求出原方程组的正确解.
5、(1)解方程组:
(2)解不等式组
---------参考答案-----------
一、单选题
1、C
【分析】
观察两方程中系数关系,即可得到最好的解法.
【详解】
解:解方程组的最好方法是由①得,再代入②.
故选:C.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
2、B
【分析】
设购买甲种奖品为x件,乙种奖品为y件,由题意可得,进而求解即可.
【详解】
解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:
,
∴,
∵,且x、y都为正整数,
∴当时,则;
当时,则;
当时,则;
当时,则(不合题意舍去);
∴购买方案有3种;
故选B.
【点睛】
本题主要考查二元一次方程的应用,正确理解题意、掌握二元一次方程整数解求解的方法是解题的关键.
3、A
【分析】
把代入5x+3y=1即可求出m的值.
【详解】
把代入5x+3y=1,得
10+3m=1,
∴m=-3,
故选A.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
4、A
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
5、B
【分析】
由整体思想可得,求出x、y即可.
【详解】
解:∵方程组的解为,
∴方程组的解,
∴;
故选:B.
【点睛】
本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.
6、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
7、B
【分析】
把x:y=3:2变形为x=y,联立解方程组即可.
【详解】
解:把x:y=3:2变形为:x=y.
把x=y代入x+3y=27中:y=6.
∴x=9.
∴x、y中较小的是6.
故选:B.
【点睛】
本题实质是解二元一次方程组,掌握代入消元法是解题的关键.
8、B
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
9、C
【分析】
先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.
【详解】
解:由题意得:,
联立,
由①②得:,
解得,
将代入①得:,
解得,
将代入方程得:,
解得,
故选:C.
【点睛】
本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.
10、B
【分析】
根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;
【详解】
解A.中,xy的次数是2,故A不符合题意;
B.是二元一次方程组,故B符合题意;
C.中y在分母上,故C不符合题意;
D.中有3个未知数,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.
二、填空题
1、5
【解析】
【分析】
两个单项式,所含的字母相同,相同字母的指数也相同,则称这两个单项式是同类项,据此转化为解二元一次方程组,解得,再将其代入多项式中计算即可.
【详解】
解:∵与的和是单项式,
∴与是同类项,
∴,
解得:.
∴.
2、
【解析】
【分析】
将代入方程,然后令的系数为0,得到关于的二元一次方程组,求解即可.
【详解】
解:将代入方程=1+得
由题意可得:,解得
则
故答案为:
【点睛】
此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.
3、##
【解析】
【分析】
将①-②即可得,结合题意即可求得的范围.
【详解】
①②得,
2x﹣3y>1
解得
故答案为:
【点睛】
本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键.
4、-12
【解析】
【分析】
把代入方程组求出m,n即可;
【详解】
把代入中得:,
得:,
解得:,
把代入①中得:,
∴方程组的解是,
∴,
∴mn的相反数是;
故答案是:.
【点睛】
本题主要考查了二元一次方程组的求解,代数式求值,相反数的性质,准确计算是解题的关键.
5、5
【解析】
【分析】
将方程组中的两个方程相加即可得出答案.
【详解】
解:,
由①②得:,即,
关于的方程组的解也是方程的解,
,
故答案为:5.
【点睛】
本题考查了二元一次方程组,熟练掌握二元一次方程组的解法是解题关键.
三、解答题
1、(1),;(2)
【分析】
(1)根据定义F(m)=求解即可;
(2)根据题意求得,进而根据以及K(m)除以4恰好余3,根据求得的值,进而求得的值.
【详解】
解:(1),根据定义,
F(123)
,则
F(246)
(2)设,且为正整数
则
K(m)除以4恰好余3,
则能被4整除
即能被4整除,即是整数,
设,即,
是的倍数,则是2的倍数
或 或
则或或
综上所述,
【点睛】
本题考查了二元一次方程组以及一元一次不等式的应用,理解题目中的定义是解题的关键.
2、
【分析】
由题意可先解方程组,求出x、y后代入含a、b的两个方程,进一步即可求出结果;
【详解】
解:解方程组,得,
代入,得,
解得
【点睛】
本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键.
3、.
【分析】
模仿材料发现第一个方程中各项系数都比第二个方程的各项系数都大3,可采用材料方法①﹣②得:x+y=1③,①﹣③×2021 得:x=4,再求y即可.
【详解】
解:
①﹣②得:3x+3y=3,即x+y=1③
①﹣③×2021 得:x=4
把x=4代入③得:y=-3
所以原方程组的解为
.
【点睛】
本题考查解二元一次方程组.掌握抓住方程组的特征,用加减法解方程组是解题关键.①
4、甲把a看4,乙把b看成了,原方程组的正确解是
【分析】
把代入①可解得看错的a,代入②可解得正确的b,把代入①可解得正确的a,代入②可解得看错的b,进一步即可求出结果;
【详解】
解:由题意把代入①得a+6=10,得看错的a=4,把代入②得1+6b=7,解得正确的b=1;
把代入①得-a+12=10,得正确的a=2,把代入②得-1+12b=7,解得看错的b=,
则原方程组为,解得;
所以甲把a看4,乙把b看成了,原方程组的正确解是.
【点睛】
本题考查了二元一次方程组的解法,正确理解题意、熟练掌握二元一次方程组的解法是关键.
5、(1);(2)﹣2﹤x≤3.
【分析】
(1)方程运用加减消元法求解即可;
(2)分别求出每个不等式的解集,再取它们的公共部分即可
【详解】
解:(1)
①+②×5得:27x=23+17×5,
解得:x=4,
将x=4代入②中,得:20﹣y=17,
解得:y=3,
∴原方程组的解为.
(2) ,
解:解①得:x﹥﹣2,
解②得:x≤3,
∴不等式组的解集为:﹣2﹤x≤3
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
相关试卷
这是一份2020-2021学年第五章 二元一次方程组综合与测试当堂检测题,共19页。试卷主要包含了下列是二元一次方程的是,二元一次方程组的解是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了方程组的解是,有铅笔,如图,9个大小等内容,欢迎下载使用。
这是一份初中北京课改版第五章 二元一次方程组综合与测试一课一练,共20页。试卷主要包含了已知关于x,方程x+y=6的正整数解有等内容,欢迎下载使用。