北京课改版七年级下册第五章 二元一次方程组综合与测试课时练习
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课时练习,共21页。试卷主要包含了有铅笔等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).
A., B.2,1 C.-2,1 D.-1,0
2、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )
A.-2 B.-1 C.2 D.1
3、下列各组数值是二元一次方程2x﹣y=5的解是( )
A. B. C. D.
4、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )
A.1.2元 B.1.05元 C.0.95元 D.0.9元
5、用代入法解方程组,以下各式正确的是( )
A. B.
C. D.
6、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )
A.1个 B.2个 C.3个 D.4个
7、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8
8、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )
A. B. C. D.
9、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )
A.2 B.1 C. D.0
10、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )
A.4 B.3 C.2 D.1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文,,,对应密文,,,
2、在一个的方格中填写个数,使得每行、每列、每条对角线上的三个数之和相等,得到一个的方格称为一个三阶幻方,如图1,在图2方格中填写上一些数,使它构成一个三阶幻方,则的值为______.
3、已知关于x的方程=1+中,a、b、k为常数,若无论k为何值,方程的解总是x=1,则a+b的值为 ___.
4、我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说:“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”设共有x辆车,y人,则______,______.
5、已知方程组和有相同的解,则ab=_____.
三、解答题(5小题,每小题10分,共计50分)
1、阅读材料:
在解方程组时,萌萌采用了一种“整体代换”的解法.
解:将方程②变形:,即③
把方程①代入③得,
∴,
把代入①,得,
∴原方程组的解为.
请模仿萌萌的“整体代换”法解方程组
2、分别用代入消元法和加减消元法解方程组并说明两种方法的共同点.
3、某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.
(1)求购进甲,乙两种钢笔每支各需多少元?
(2)若购进了甲种钢笔80支,乙种钢笔60支,求需要多少元?
(3)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种购进方案.
4、解方程组或不等式组:
(1);
(2).
5、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:
步骤1:计算前12位数字中偶数位数字的和a,即a=9+1+3+5+7+9=34;
步骤2:计算前12位数字中奇数位数字的和b,即b=6+0+2+4+6+8=26;
步骤3:计算3a与b的和c,即c=3×34+26=128;
步骤4:取大于或等于c且为10的整数倍的最小数d,即d=130;
步骤5:计算d与c的差就是校验码X,即X=130﹣128=2.
请解答下列问题:
(1)《数学故事》的条形码为978753454647Y,则校验码Y的值为 ;
(2)如图1,某条形码中的一位数字被墨水污染了,请求出这个数字;
(3)如图2,条形码中被污染的两个数字的和是5,这两个数字从左到右分别是 、 .
---------参考答案-----------
一、单选题
1、A
【分析】
将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可
【详解】
将时,代入,
得 ①,
再由k比b大1得 ②,
①②联立,解得,.
故选:A.
【点睛】
此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.
2、C
【分析】
先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.
【详解】
解∵x=y,
∴原方程组可变形为,
解方程①得x=1,
将代入②得,
解得,
故选C.
【点睛】
本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.
3、D
【分析】
将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.
【详解】
解:A. 把代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;
B. 把代入方程2x﹣y=5,0-5=-5≠5,不满足题意;
C. 把代入方程2x﹣y=5,2-5=-3≠5,不满足题意;
D. 把代入方程2x﹣y=5,6-1=5,满足题意;
故选:D.
【点睛】
本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.
4、B
【分析】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.
【详解】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,
根据题意得:,
②–①可得:.
故选:B.
【点睛】
本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.
5、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
6、C
【分析】
设这对夫妇的年龄的和为x,子女现在的年龄和为y,这对夫妇共有z个子女;根据本题中的三个等量关系为:此夫妇现在的年龄和=6×其子女现在的年龄和;此夫妇两年前的年龄和=10×其子女两年前的年龄和;此夫妇6年后的年龄和=3×其子女6年后的年龄和.可列出方程组,解方程组即可.
【详解】
设现在这对夫妇的年龄和为x岁,子女现在的年龄和为y岁,这对夫妇共有z个子女,则,
解得
这对夫妇共有3个子女.
故选C.
【点睛】
本题考查了三元一次方程组的应用,根据题意列出方程组并解方程组是解题的关键.
7、A
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
8、A
【分析】
把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.
【详解】
解:把x=1代入方程组,可得,解得y=2,
将y=2代入1+my=0中,得m=,
故选:A.
【点睛】
此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.
9、D
【分析】
解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.
【详解】
解:,
①+②得
2x=2a+6,
x=a+3,
把代入①,得
a+3+y=-a+1,
y=-2a-2,
∵x+2y=﹣1
∴a+3+2(-2a-2)=-1,
∴a=0,
故选D.
【点睛】
本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.
10、C
【分析】
先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.
【详解】
解:由题意得:,
联立,
由①②得:,
解得,
将代入①得:,
解得,
将代入方程得:,
解得,
故选:C.
【点睛】
本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.
二、填空题
1、故答案为:
【点睛】
本题考查同类项的定义,合并同类项,涉及简单二元一次方程组解法,代数式求值,是基础考点,难度较易,掌握相关知识是解题关键.
5.5,2,5,7
【解析】
【分析】
设解密得到的明文为,,,,加密规则得出方程组,求出,,,的值即可.
【详解】
解:设明文为,,,,
由题意得:,
解得:,
则得到的明文为5,2,5,7.
故答案为:5,2,5,7.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
2、13
【解析】
【分析】
设每行、每列、每条对角线上的三个数之和为m,根据题意列出方程(组),解之即可得出答案.
【详解】
解:设每行、每列、每条对角线上的三个数之和为m,
则方格中其他数为:
-3 | x | m-x+3 |
m-1 | 1 | x-y-3 |
4 | m-y-4 | y |
∵,
解得:,
故答案为:13.
【点睛】
本题综合考查了二元一次方程(组)的应用,解决本题的关键是设出未知数,利用每行、每列、每条对角线上的三个数之和相等列出方程,建立方程(组)求解是解题关键.
3、
【解析】
【分析】
将代入方程,然后令的系数为0,得到关于的二元一次方程组,求解即可.
【详解】
解:将代入方程=1+得
由题意可得:,解得
则
故答案为:
【点睛】
此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.
4、 15 39
【解析】
【分析】
设有x辆车,有y人,根据“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘”列出方程组,解之即可.
【详解】
解:设有x辆车,有y人,
依题意得:,
解得,,
故答案为:15,39.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系是解此题的关键.
5、-1
【解析】
【分析】
根据方程组和有相同的解,所以把和组成方程组求出 x、y 的值,再把 x、y 的值代入其他两个方程 和即可求出a 、 b 的值,即可得答案.
【详解】
解:∵方程组和有相同的解,
∴方程组的解也是它们的解,
①× 2+②,得:2x+x= 4-7,
解得:x=-1,
把x = -1代入①,得:-1+y=2,
解得:y=3,
把x =-1, y=3代入得:-a+3= 4
解得:a= -1,
把x =-1, y=3代入得:-1+3b=8,
解得:b=3,
∴ab=(-1)3=-1,
故答案为:-1.
【点睛】
本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.
三、解答题
1、.
【分析】
将方程②变形为2(4x-3y)-y=18,再将4x-3y=6整体代入即可求方程组.
【详解】
解:中,
将②变形,得:8x-6y-y=18即2(4x-3y)-y=18③,
将①代入③得,2×6-y=18,
∴y=-6,
将y=-6代入①得,x=-3,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,熟练掌握加减消元法和代入消元法解二元一次方程组,体会整体思想解方程组的便捷是解题的关键.
2、,两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.
【分析】
根据题意分别直接利用代入消元法与加减消元法求出方程组的解即可.
【详解】
解:代入消元法:,
由①得:y=7-x③,
把③代入②得:5x+21-3x=31,
解得:x=5,
把x=5代入③得:y=2,
则方程组的解为;
加减消元法:,
①×5-②得:2y=4,
解得:y=2,
把y=2代入①得:x=5,
则方程组的解为,
两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.
【点睛】
本题考查解二元一次方程组,主要利用了消元的思想,注意掌握消元的方法有代入消元法与加减消元法.
3、(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种
【分析】
(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元”,即可得出关于,的二元一次方程组,解之即可得出甲、乙两种钢笔的单价;
(2)利用总价单价数量,即可求出购进甲种钢笔80支、乙种钢笔60支所需费用;
(3)设购进甲种钢笔支,则购进乙种钢笔支,根据“购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,结合,均为正整数,即可得出进货方案的数量.
【详解】
解:(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,
依题意得:,
解得:.
答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元.
(2)
(元.
答:需要1000元.
(3)设购进甲种钢笔支,则购进乙种钢笔支,
依题意得:,
解得:.
又,均为正整数,
可以为150,152,154,156,158,160,
该文具店共有6种购进方案.
【点睛】
本题考查了二元一次方程组的应用、有理数的混合运算以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,找出关于的一元一次不等式组.
4、(1);(2).
【分析】
(1)利用代入消元法求解即可;
(2)先求出每个不等式的解集,然后求出不等式组的解集即可.
【详解】
解:(1)
由②得:③,
将③代入①得,解得
将代入③得:
∴方程组的解为:;
(2)解不等式组
由①得:,解得,
由②得:,解得,
∴不等式组的解集为:.
【点睛】
本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法.
5、(1)1;(2)9;(3)1,4
【分析】
(1)有以上算法分别求出a,b,c,d的值,由步骤5得出Y=1;
(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;
(3)根据校验码为9结合两个数字的和是5即可求解.
【详解】
解:(1)有题意可知,
a=7+7+3+5+6+7=35,
b=9+8+5+4+4+4=34,
c=3a+b=139,
d=140,
Y=d﹣c=140﹣139=1.
故答案为:1,
(2)设污点的数为m,
a=9+1+2+1+1+2=16,
b=6+0+0+8+m+0=14+m,
c=3a+b=62+m,
d=9+62+m=71+m,
∵d为10的整数倍,
∴d=80,
即71+m=80,
∴m的值为9;
则这个数字为9.
(3)可设这两个数字从左到右分别是p,q,依题意有,
a=9+9+2+q+3+5=28+q,
b=6+1+p+1+2+4=14+p,
c=3a+b=98+(3q+p),
∵d为10的整数倍,
∴d=120,
∴3q+p=13
又∵p+q=5
解得p=1,q=4
故答案为:1,4.
【点睛】
此题考查了有理数的加减运算,一元一次方程的应用以及二元一次方程的应用,解题的关键是理解并掌握题意,根据题意正确列出方程.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了解方程组的最好方法是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习,共20页。试卷主要包含了解方程组的最好方法是等内容,欢迎下载使用。
这是一份数学七年级下册第五章 二元一次方程组综合与测试课堂检测,共18页。试卷主要包含了如果x,小明在解关于x等内容,欢迎下载使用。