终身会员
搜索
    上传资料 赚现金

    精品解析2022年京改版七年级数学下册第五章二元一次方程组专项测试试卷(无超纲)

    立即下载
    加入资料篮
    精品解析2022年京改版七年级数学下册第五章二元一次方程组专项测试试卷(无超纲)第1页
    精品解析2022年京改版七年级数学下册第五章二元一次方程组专项测试试卷(无超纲)第2页
    精品解析2022年京改版七年级数学下册第五章二元一次方程组专项测试试卷(无超纲)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试达标测试

    展开

    这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试达标测试,共21页。试卷主要包含了方程组的解是等内容,欢迎下载使用。
    京改版七年级数学下册第五章二元一次方程组专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列各方程中,是二元一次方程的是(  )A.=y+5x B.3x+2y=2x+2y C.x=y2+1 D.2、下列方程组为二元一次方程组的是(    A. B. C. D.3、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为(    A. B.C. D.4、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去从而求解,这种解法体现的数学思想是(    A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想5、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为xy,则可列方程组为(  )A. B.C. D.6、下列各组数值是二元一次方程2xy=5的解是(    A. B. C. D.7、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x,一位数是y,则可列方程组为(    A. B.C. D.8、方程组的解是(   A. B. C. D.9、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是(  )A.1 B.﹣1 C.2 D.﹣210、下列方程组中,属于二元一次方程组的是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab的值为_____.2、一个两位数,个位上的数字与十位上的数字之和是10,把这个两位数的个位和十位上的数字调换位置后,得到的数比原来大18,则调换后的数为____.3、已知是方程的一组解,则=______.4、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.5、方程组有正整数解,则正整数a的值为________.三、解答题(5小题,每小题10分,共计50分)1、任意一个三位自然数m,如果满足百位上的数字小于十位上的数字,其百位上的数字与十位上的数字之和等于个位上的数字,则称m为“进步数”.如果在一个“进步数”m的末尾添加其十位上的数字的2倍,恰好得到一个四位数m',则称m'为m的“进步美好数”,并规定Fm)=.例如m=134是一个“进步数”,在134的末尾添加数字3×2=6,得到一个四位数m′=1346,则1346为134的“进步美好数”,F(134)==12.(1)求F(123)和F(246)的值.(2)设“进步数”m的百位上的数字为a,十位上的数字为b,规定Km)=.若Km)除以4恰好余3,求出所有的“进步数”m2、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型运载量(吨/辆)1012运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?3、(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值.4、(1)解二元一次方程组(2)现在你可以用哪些方法得到方程组的解?请你对这些方法进行比较.5、运输公司要把120吨物资从A地运往B地,有甲,乙,丙三种车型供选择,每种型号的车辆的运载量和运费如下表所示.(假设每辆车均满载)车型运载量(吨/辆)5810运费(元/辆)450600700解答下列问题:(1)安排甲型车8辆,乙型车5辆,丙型车___________辆可将全部物资一次运完;(2)若全部物资仅用甲、乙型车一次运完,需运费9600元,则甲、乙型车各需多少辆?(3)若用甲、乙,丙型车共14辆同时参与运送,且一次运完全部物资,则三种型号的车各需多少辆?此时总运费为多少元? ---------参考答案-----------一、单选题1、D【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【详解】解:A、不是整式方程;故错误.B、3x+2y=2x+2y移项,合并同类项,得x=0,只有一个未知数;故错误.C、未知数y最高次数是2;故错误.D、是二元一次方程,故正确.故选:D.【点睛】本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2、B【分析】根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;【详解】解A.中,xy的次数是2,故A不符合题意;B.是二元一次方程组,故B符合题意;C.y在分母上,故C不符合题意;D.中有3个未知数,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.3、B【分析】设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可【详解】解:设馒头每个元,包子每个元,根据题意得故选B【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.4、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.5、B【分析】设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【详解】解:设甲持钱x,乙持钱y
    根据题意,得:
    故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.6、D【分析】将选项中的解分别代入方程2xy=5,使方程成立的即为所求.【详解】解:A. 把代入方程2xy=5,-4-1=-5≠5,不满足题意;B. 把代入方程2xy=5,0-5=-5≠5,不满足题意;C. 把代入方程2xy=5,2-5=-3≠5,不满足题意;D. 把代入方程2xy=5,6-1=5,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.7、D【分析】若设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.【详解】解:设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,依题意得:故选D.【点睛】此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.8、C【分析】先用加减消元法解二元一次方程组,再确定选项即可.【详解】解:方程组由①×3+②得10x=5,解得代入①中得所以原方程组的解是故选择C.【点睛】本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.9、C【分析】先求出的解,然后代入kx+y=7求解即可.【详解】解:联立②-①,得-3y=3,y=-1,y=-1代入①,得x-1=3x=4,代入kx+y=7得:4k﹣1=7,k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.10、C【分析】根据二元一次方程组的定义求解即可.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.【详解】解:A、中有3个未知数,不是二元一次方程组,不符合题意;B、未知数x的次数是2,不是二元一次方程组,不符合题意;C、由两个一次方程组成,并含有两个未知数,故是二元一次方程组,符合题意;D、xy的次数是2,不是二元一次方程组,不符合题意.故选:C.【点睛】此题考查了二元一次方程组的定义,解题的关键是熟练掌握二元一次方程组的定义.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.二、填空题1、16【解析】【分析】根据图1和图2分析可得,即可的值,进而可得的值【详解】由图1可得长方形的长为,宽为根据图2可知大长方形的宽可以表示为解得故答案为:【点睛】本题考查了二元一次方程组,根据图中信息求得的值是解题的关键.2、64【解析】【分析】设原来两位数的十位为x,个位为y,根据个位上的数字与十位上的数字之和为10,把个位上的数字与十位上的数字调换位置后,得到新的两位数比原数大18,列方程组求解.【详解】解:设原来两位数的十位为x,个位为y由题意得,解得:即调换后的数为64.故答案为:64.【点睛】本题考查了二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.3、1【解析】【分析】代入方程得出,再变形,最后代入求出即可.【详解】解:是关于的方程的一组解,代入得:故答案是:1.【点睛】本题考查了二元一次方程的解和求代数式的值,解题的关键是能够整体代入求值.4、【解析】【分析】由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得故答案为:【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.5、2【解析】【分析】先消去 求解再由为正整数,分类求解 结合为正整数求解 再检验此时的是否满足也为正整数,从而可得答案.【详解】解:得: ①-③得: 时,方程无解,时,方程的解为: 为正整数, 解得: 为正整数, 为正整数,由②得:也为正整数,所以故答案为:2【点睛】本题考查的是二元一次方程的正整数解,掌握“解二元一次方程组的方法及分类讨论”是解本题的关键.三、解答题1、(1);(2)【分析】(1)根据定义Fm)=求解即可;(2)根据题意求得,进而根据以及Km)除以4恰好余3,根据求得的值,进而求得的值.【详解】解:(1),根据定义,F(123),则F(246)(2)设,且为正整数 Km)除以4恰好余3,能被4整除能被4整除,即是整数, ,即的倍数,则是2的倍数综上所述,【点睛】本题考查了二元一次方程组以及一元一次不等式的应用,理解题目中的定义是解题的关键.2、甲种车型需9辆,乙种车型需5辆.【分析】设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可.【详解】解:设甲种车型需辆,乙种车型需辆,根据题意得解得∴甲种车型需9辆,乙种车型需5辆答:甲种车型需9辆,乙种车型需5辆.【点睛】本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解.3、(1)a=0;(x+1)(x2x+1);(2)31;【分析】(1)先将x=1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定bc的值,再因式分解多项式;(2)设3x4+ax3+bx34=(x+1)(x2)•M,则x=1,x=2是方程3x4+ax3+bx34=0的解,然后解关于ab的方程组,即可得到答案.【详解】解:(1)∵x+1是多项式x3+ax+1的因式,∴当x=1时,x3+ax+1=0,1a+1=0,a=0,x3+1=(x+1)(x2+bx+c),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+bx+c∵等式两边x同次幂的系数相等,x3+(b+1)x2+(c+bx+c=x3+1,解得:a的值为0,x3+1=(x+1)(x2x+1);(2)设3x4+ax3+bx34=(x+1)(x2)•M(其中M为二次整式),x=1,x=2是方程3x4+ax3+bx34=0的解,a+b=8+(39)=31;【点睛】本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题.4、(1);(2)见解析【分析】(1)利用加减消元法解方程组;(2)方法一:将两个方程分别化简再求解;方法二:根据(1)可得方程的解为,再利用加减法求解.【详解】解:(1)得16y=48,y=3,y=3代入①得x=5,∴这个方程组的解是(2)方法一:去括号得到方程组再解得结果方法二:由(1)解为,可得的解为,解得【点睛】此题考查解二元一次方程组,掌握二元一次方程组的解法:代入法和加减法,(2)可灵活运用解题方法求解,渗透一定的整体换元思想和化归思想.5、(1)4;(2)需要甲型车8辆,乙型车10辆;(3)需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元.【分析】(1)根据三种车型的运载量列出式子,计算乘除法与减法即可得;(2)设需要甲型车辆,乙型车辆,根据“120吨物资”和“运费9600元”建立方程组,解方程组即可得;(3)设需要甲型车辆,乙型车辆,从而可得需要丙型车辆,再根据“一次运完全部物资”建立关于的等式,结合为正整数进行分析即可得.【详解】解:(1)(辆),即安排甲型车8辆,乙型车5辆,丙型车4辆可将全部物资-次运完,故答案为:4;(2)设需要甲型车辆,乙型车辆,由题意得:解得,符合题意,答:需要甲型车8辆,乙型车10辆;(3)设需要甲型车辆,乙型车辆,则需要丙型车辆,由题意得:整理得:均为正整数,只能等于5,此时总运费为(元),答:需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元.【点睛】本题考查了二元一次方程组的应用等知识点,正确建立方程组是解题关键. 

    相关试卷

    初中北京课改版第五章 二元一次方程组综合与测试课时练习:

    这是一份初中北京课改版第五章 二元一次方程组综合与测试课时练习,共19页。试卷主要包含了下列方程是二元一次方程的是,方程组的解是等内容,欢迎下载使用。

    初中北京课改版第五章 二元一次方程组综合与测试课后复习题:

    这是一份初中北京课改版第五章 二元一次方程组综合与测试课后复习题,共19页。试卷主要包含了在一次爱心捐助活动中,八年级,下列方程组为二元一次方程组的是等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习题:

    这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共20页。试卷主要包含了用代入消元法解关于,若是方程的解,则等于,若方程组的解为,则方程组的解为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map