


数学七年级下册第五章 二元一次方程组综合与测试课后复习题
展开这是一份数学七年级下册第五章 二元一次方程组综合与测试课后复习题,共20页。试卷主要包含了二元一次方程的解可以是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于x,y的方程是二元一次方程,则m和n的值是( )
A. B. C. D.
2、小明在解关于x、y的二元一次方程组时得到了正确结果.后来发现、处被墨水污损了,请你帮他计算出、处的值分别是( ).
A.1、1 B.2、1 C.1、2 D.2、2
3、已知是方程x﹣my=3的解,那么m的值为( )
A.2 B.﹣2 C.4 D.﹣4
4、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是( )
A.1 B.﹣1 C.2 D.﹣2
5、为迎接2022年北京冬奧会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )
A.2种 B.3种 C.4种 D.5种
6、用加减法将方程组中的未知数x消去后,得到的方程是( ).
A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16
7、已知方程,,有公共解,则的值为( ).
A.3 B.4 C.0 D.-1
8、图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x的值应为( ).
A.-4 B.-3 C.3 D.4
9、二元一次方程的解可以是( )
A. B. C. D.
10、已知是二元一次方程的一组解,则m的值是( )
A. B.3 C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若不等式组的解集为.则关于、的方程组的解为_____________.
2、二元一次方程组的解为 _____.
3、方程组的解是:________.
4、已知关于x、y的方程组的解满足x+y=4,则m=__.
5、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.
三、解答题(5小题,每小题10分,共计50分)
1、用加减法解方程组:
2、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;
(1)求甲、乙两种商品每件的进价分别为多少元;
(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?
3、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:
步骤1:计算前12位数字中偶数位数字的和a,即a=9+1+3+5+7+9=34;
步骤2:计算前12位数字中奇数位数字的和b,即b=6+0+2+4+6+8=26;
步骤3:计算3a与b的和c,即c=3×34+26=128;
步骤4:取大于或等于c且为10的整数倍的最小数d,即d=130;
步骤5:计算d与c的差就是校验码X,即X=130﹣128=2.
请解答下列问题:
(1)《数学故事》的条形码为978753454647Y,则校验码Y的值为 ;
(2)如图1,某条形码中的一位数字被墨水污染了,请求出这个数字;
(3)如图2,条形码中被污染的两个数字的和是5,这两个数字从左到右分别是 、 .
4、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:
车型 | 甲 | 乙 |
运载量(吨/辆) | 10 | 12 |
运费(元/辆) | 700 | 720 |
若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?
5、解方程组:
(1);
(2).
---------参考答案-----------
一、单选题
1、C
【分析】
根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.
【详解】
解:由题意可得:,即
①+②得:,解得
将代入①得,
故
故选:C
【点睛】
此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.
2、B
【分析】
将方程组的解代入方程求解即可.
【详解】
将代入,得,
解之得.
故选:B.
【点睛】
此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.
3、A
【分析】
直接将代入x﹣my=3中即可得出答案.
【详解】
解:∵是方程x﹣my=3的解,
∴,
解得:,
故选:A.
【点睛】
本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值.
4、C
【分析】
先求出的解,然后代入kx+y=7求解即可.
【详解】
解:联立,
②-①,得
-3y=3,
∴y=-1,
把y=-1代入①,得
x-1=3
∴x=4,
∴,
代入kx+y=7得:4k﹣1=7,
∴k=2,
故选:C.
【点睛】
本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.
5、B
【分析】
设购买甲种奖品为x件,乙种奖品为y件,由题意可得,进而求解即可.
【详解】
解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:
,
∴,
∵,且x、y都为正整数,
∴当时,则;
当时,则;
当时,则;
当时,则(不合题意舍去);
∴购买方案有3种;
故选B.
【点睛】
本题主要考查二元一次方程的应用,正确理解题意、掌握二元一次方程整数解求解的方法是解题的关键.
6、D
【分析】
根据二元一次方程组的加减消元法可直接进行求解.
【详解】
解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;
故选D.
【点睛】
本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.
7、B
【分析】
联立,,可得:,,将其代入,得值.
【详解】
,解得,
把代入中得:,
解得:.
故选:B.
【点睛】
本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.
8、A
【分析】
如图所示,其中a、b、c、d表示此方格中表示的数,则可得由此即可得到④,⑤,然后把④⑤代入③中即可求解.
【详解】
解:如图所示,其中a、b、c、d表示此方格中表示的数,
由题意得:,
由①得④,
由②得⑤,
把④和⑤代入③中得,
∴,
故选A.
【点睛】
本题主要考查了解方程组,解题得关键在于能够利用整体代入的思想进行求解.
9、A
【分析】
把各个选项答案带进去验证是否成立即可得出答案.
【详解】
解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;
B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
故选A.
【点睛】
本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.
10、A
【分析】
把代入5x+3y=1即可求出m的值.
【详解】
把代入5x+3y=1,得
10+3m=1,
∴m=-3,
故选A.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
二、填空题
1、
【解析】
【分析】
根据已知解集确定出a与b的值,代入方程组求出解即可.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组的解集为-2<x<3.
∴a=2,b=3,
代入方程组得:,
①-②得:4y=4,即y=1,
把y=1代入①得:x=2,
则方程组的解为,
故答案为:.
【点睛】
本题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
2、
【解析】
【分析】
利用加减消元法解二元一次方程组即可得到答案.
【详解】
解:,
用①+②得:,解得,
把代入①中得:,解得,
∴方程组的解为.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.
3、
【解析】
【分析】
利用加减消元法解题.
【详解】
解:
①+②×3得:
把代入②得,
故答案为:.
【点睛】
本题考查加减法解二元一次方程组,是重要考点,掌握相关知识是解题关键.
4、##2.5
【解析】
【分析】
①﹣②得出x+y=m,根据x+y=4求出m=4,再求出方程的解即可.
【详解】
解:,
①﹣②得:2x+2y=2m+3,化简得x+y=m+
∵x+y=4,
∴m+=4,
解得:m=,
故答案为:.
【点睛】
此题考查了二元一次方程组含参数问题,解题的关键是根据题意让两个方程相加.
5、
【解析】
【分析】
由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.
【详解】
解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.
三、解答题
1、
【分析】
先把原方程整理得,然后利用加减消元法求解即可.
【详解】
解:
整理得,
得,解得,
将代入①中得,解得,
∴原方程组的解是.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.
2、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件
【分析】
(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;
(2)设该超市购进甲种商品m件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.
【详解】
(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据题意的
解得
故甲种商品每件进价为100,乙种商品每件进价300元
(2)设该超市购进甲种商品m件,根据题意得:
(150-100)m+(400-300)(80-m)≥6500
解得m≤30
∵m为整数
∴m的最大整数值为30.
即该超市最多购进甲种商品30件.
【点睛】
本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.
3、(1)1;(2)9;(3)1,4
【分析】
(1)有以上算法分别求出a,b,c,d的值,由步骤5得出Y=1;
(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;
(3)根据校验码为9结合两个数字的和是5即可求解.
【详解】
解:(1)有题意可知,
a=7+7+3+5+6+7=35,
b=9+8+5+4+4+4=34,
c=3a+b=139,
d=140,
Y=d﹣c=140﹣139=1.
故答案为:1,
(2)设污点的数为m,
a=9+1+2+1+1+2=16,
b=6+0+0+8+m+0=14+m,
c=3a+b=62+m,
d=9+62+m=71+m,
∵d为10的整数倍,
∴d=80,
即71+m=80,
∴m的值为9;
则这个数字为9.
(3)可设这两个数字从左到右分别是p,q,依题意有,
a=9+9+2+q+3+5=28+q,
b=6+1+p+1+2+4=14+p,
c=3a+b=98+(3q+p),
∵d为10的整数倍,
∴d=120,
∴3q+p=13
又∵p+q=5
解得p=1,q=4
故答案为:1,4.
【点睛】
此题考查了有理数的加减运算,一元一次方程的应用以及二元一次方程的应用,解题的关键是理解并掌握题意,根据题意正确列出方程.
4、甲种车型需9辆,乙种车型需5辆.
【分析】
设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可.
【详解】
解:设甲种车型需辆,乙种车型需辆,
根据题意得
解得,
∴甲种车型需9辆,乙种车型需5辆
答:甲种车型需9辆,乙种车型需5辆.
【点睛】
本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解.
5、(1);(2)
【分析】
(1)利用代入消元法解二元一次方程组即可;
(2)先整理原方程得然后把和当做一个整体利用加减消元法求出,,然后利用加减消元法求解即可.
【详解】
解:(1),
把②代入①中得:,解得,
把代入②中得,,
∴方程组的解集为;
(2)
整理得:,
用①-②得:,解得,
把③代入①得:,解得,
用③+④得:,解得,
把代入③得,
∴方程组的解为.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.
相关试卷
这是一份初中北京课改版第五章 二元一次方程组综合与测试精练,共19页。试卷主要包含了已知,则等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共22页。试卷主要包含了下列说法,命题等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时训练,共18页。试卷主要包含了已知下列一组数,若,,,则的值为等内容,欢迎下载使用。