北京课改版七年级下册第五章 二元一次方程组综合与测试课后测评
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课后测评,共18页。
京改版七年级数学下册第五章二元一次方程组专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列是二元一次方程的是( )
A.3x﹣6=x B.3x=2y C.x﹣=0 D.2x﹣3y=xy
2、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )
A.1.2元 B.1.05元 C.0.95元 D.0.9元
3、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).
A., B.2,1 C.-2,1 D.-1,0
4、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )
A.4 B.3 C.2 D.1
5、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )
A.1个 B.2个 C.3个 D.4个
6、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )
A. B.
C. D.
7、用代入法解方程组,以下各式正确的是( )
A. B.
C. D.
8、已知是方程x﹣my=3的解,那么m的值为( )
A.2 B.﹣2 C.4 D.﹣4
9、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )
A.3种 B.4种 C.5种 D.6种
10、已知是方程的解,则k的值为( )
A.﹣2 B.2 C.4 D.﹣4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知是关于x,y的二元一次方程组的解,则的值为____________.
2、已知,则________.
3、若是方程2x+y=10的解,求6a+3b﹣4的值是 ___.
4、已知方程组的解是,则的值为________.
5、在《九章算术》的“方程”一章中,一次方程组是由算筹布置而成的,若图1所示的算筹图表示的方程组为,则图2所表示的方程组的解为__________.
三、解答题(5小题,每小题10分,共计50分)
1、已知关于x,y的二元一次方程组与有相同的解.
(1)求x,y的值;
(2)求的值.
2、甲、乙两人同时计算一道整式乘法题:(2x+a)•(3x+b).甲由于抄错了第一个多项式中a的符号,即把+a抄成﹣a,得到的结果为6x2+11x﹣10,乙由于抄漏了第二个多项式中x的系数,即把3x抄成x,得到的结果为2x2﹣9x+10,请你计算出这道整式乘法题的正确结果.
3、某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有30人没有座位;若租用同样数量的60座客车,则多出两辆车,且其余客车恰好坐满.已知45座客车租金为每辆450元,60座客车租金为每辆650元,问:
(1)这批游客的人数是多少?原计划租用多少辆45座客车?
(2)请你设计一种租车方案,要求每位游客都有座位,费用又合算?
4、解二元一次方程组:
5、某大型商场抓住商机购进A、B两款新童装进行销售,该商场用15000元购买了一定数量的A款童装和B款童装,且每件A款童装进价与每件B款童装进价均为150元,购买A款童装的数量的2倍比B款童装的数量多20件,若该商场本次以每件A款童装按进价加价100元进行销售,每件B款童装按进价加价60%进行销售,全部销售完,
(1)求购进A、B两款童装各多少件?
(2)春节期间该商场按上次进价又购进与上一次一样数量的A、B两款童装并展开了降价促销活动,在促销期间,该商场将每件A款童装按进价提高(m+10)%进行销售,每件B款童装按上次售价降低m%销售.结果全部销售完后销售利润比上次利润少了3040元,求m的值.
---------参考答案-----------
一、单选题
1、B
【分析】
根据二元一次方程的定义逐项判断即可得.
【详解】
A、是一元一次方程,此项不符合题意;
B、是二元一次方程,此项符合题意;
C、是分式方程,此项不符合题意;
D、是二元二次方程,此项不符合题意;
故选:B.
【点睛】
本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的.
2、B
【分析】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.
【详解】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,
根据题意得:,
②–①可得:.
故选:B.
【点睛】
本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.
3、A
【分析】
将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可
【详解】
将时,代入,
得 ①,
再由k比b大1得 ②,
①②联立,解得,.
故选:A.
【点睛】
此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.
4、C
【分析】
先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.
【详解】
解:由题意得:,
联立,
由①②得:,
解得,
将代入①得:,
解得,
将代入方程得:,
解得,
故选:C.
【点睛】
本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.
5、C
【分析】
设这对夫妇的年龄的和为x,子女现在的年龄和为y,这对夫妇共有z个子女;根据本题中的三个等量关系为:此夫妇现在的年龄和=6×其子女现在的年龄和;此夫妇两年前的年龄和=10×其子女两年前的年龄和;此夫妇6年后的年龄和=3×其子女6年后的年龄和.可列出方程组,解方程组即可.
【详解】
设现在这对夫妇的年龄和为x岁,子女现在的年龄和为y岁,这对夫妇共有z个子女,则,
解得
这对夫妇共有3个子女.
故选C.
【点睛】
本题考查了三元一次方程组的应用,根据题意列出方程组并解方程组是解题的关键.
6、B
【分析】
设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.
【详解】
解:设学生人数为x,长凳数为y,
由题意得:,
故选B.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.
7、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
8、A
【分析】
直接将代入x﹣my=3中即可得出答案.
【详解】
解:∵是方程x﹣my=3的解,
∴,
解得:,
故选:A.
【点睛】
本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值.
9、A
【分析】
设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.
【详解】
解:设购买50元和25元的两种换气扇的数量分别为x,y
由题意得:,即,
∵x、y都是正整数,
∴当x=1时,y=6,
当x=2时,y=4,当x=3时,y=2,
∴一共有3种方案,
故选A.
【点睛】
本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.
10、C
【分析】
把代入是方程kx+2y=﹣2得到关于k的方程求解即可.
【详解】
解:把代入方程得:﹣2k+6=﹣2,
解得:k=4,
故选C.
【点睛】
本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.
二、填空题
1、0
【解析】
【分析】
结合题意,根据二元一次方程组的性质,将代入到原方程组,得到关于a和b的二元一次方程组,通过求解即可得到a和b,结合代数式的性质计算,即可得到答案.
【详解】
∵是关于x,y的二元一次方程组的解
∴将代入到,得
∴
∴
故答案为:0.
【点睛】
本题考查了二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.
2、-10
【解析】
【分析】
根据题目已知条件可得:,,,把变形为代值即可得出答案.
【详解】
,
,即,
,
故答案为:-10.
【点睛】
本题考查三元一次方程组,解题关键是根据题意得到已知与待求式之间的关系.
3、26
【解析】
【分析】
先代入求出2a+b=10,再变形,最后代入求出即可.
【详解】
解:∵是方程2x+y=10的解,
∴2a+b=10,
∴6a+3b−4
=3(2a+b)−4
=3×10−4
=26.
故答案为:26.
【点睛】
本题考查了二元一次方程的解和求代数式的值的应用,用了整体代入思想.
4、
【解析】
【分析】
将代入方程组,得到关于的方程组,然后求解即可.
【详解】
解:将代入方程组,得
①②,得,解得
将代入得,,解得
∴
故答案为:
【点睛】
此题考查了二元一次方程租的求解以及二元一次方程组的解,解题的关键是掌握二元一次方程组的求解方法.
5、
【解析】
【分析】
类比图1所示的算筹的表示方法解答即可.
【详解】
解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为
解得:
故答案为:
【点睛】
本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.
三、解答题
1、(1),(2)1.
【分析】
(1)首先联立两个方程组中不含a、b的两个方程求得方程组的解,
(2)根据(1)中方程组的解代入两个方程组中含a、b的两个方程从而得到关于a,b的方程组,求出a、b的值,代入代数式中求值即可.
【详解】
解:(1)联立不含a、b的两个方程得,
解这个方程组得,
(2)把,代入得,
解得:,
∴.
【点睛】
本题考查了二元一次方程组的解以及解二元一次方程组,代数式的值,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.
2、6x2﹣19x+10
【分析】
根据甲、乙两人看错的多项式分计算,然后跟甲、乙两人的结果对比,列出关于a,b的方程,即可解答.
【详解】
解:(2x﹣a)•(3x+b)
=6x2+2bx﹣3ax﹣ab
=6x2+(2b﹣3a)x﹣ab,
∴2b﹣3a=11 ①,
(2x+a)•(x+b)
=2x2+2bx+ax+ab
=2x2+(2b+a)x+ab,
∴2b+a=﹣9 ②,
由①和②组成方程组,
解得:,
∴(2x﹣5)•(3x﹣2)
=6x2﹣4x﹣15x+10
=6x2﹣19x+10.
【点睛】
本题主要考查多项式乘多项式,熟记法则:用多项式的每一项乘另一个多项式的每一项是解决此类问题的关键,同时还考查了加减法解二元一次方程组.
3、(1)480人,10辆45座客车;(2)租8辆45座客2辆60座客车车费用4900
【分析】
(1)本题中的等量关系为:45×45座客车辆数+30=游客总数,60×(60座客车辆数-2)=游客总数,据此可列方程组求出第一小题的解;
(2)设租用45座客车辆,60座客车辆,依题意得,再讨论出符合条件的整数解,然后根据价格计算出费用即可得到答案.
【详解】
解:解:(1)设这批游客的人数是x人,原计划租用45座客车y辆.
根据题意,得 ,
解这个方程组,得.
答:这批游客的人数480人,原计划租45座客车10辆;
(2)设租辆45座,辆60座,则
整理得:
当时,
则全部租45座客车:480÷45≈11(辆),
所以需租11辆,租金为(元),
当时,则全部租60座客车:8(辆),
所以需租8辆,租金为(元),
当时,则租车费用为:(元),
当时,则租车费用为:(元),
所以租45座的客车8辆,租2辆60座的客车,租车费用最低.
【点睛】
本题考查的是二元一次方程组的应用,二元一次方程的正整数解问题,掌握利用二元一次方程(组)解决问题是解本题的关键.
4、
【分析】
根据加减消元法计算即可.
【详解】
解:
①2得4x+6y=60③
②3得9x+6y=75④
④③得5x=15
x=3
将x=3代入①中
6+3y=30
y=8
∴原方程组的解为
【点睛】
本题主要考查解二元一次方程组,熟练掌握二元一次方程组的解法是解决本题的关键.
5、(1)购进A款童装40件,B款童装60件;(2)
【分析】
(1)设购进A款童装x件,B款童装y件,则根据“该商场用15000元购买了一定数量的A款童装和B款童装”及“购买A款童装的数量的2倍比B款童装的数量多20件”可列出方程组进行求解;
(2)由题意易得上次A款童装的利润为4000元,B款童装的利润为5400元,然后根据“该商场将每件A款童装按进价提高(m+10)%进行销售,每件B款童装按上次售价降低m%销售.结果全部销售完后销售利润比上次利润少了3040元”可列方程进行求解.
【详解】
解:(1)设购进A款童装x件,B款童装y件,由题意得:
,
解得:,
答:购进A款童装40件,B款童装60件;
(2)由(1)及题意可得:上次A款童装的利润为100×40=4000元,B款童装的利润为60×150×60%=5400元,即总利润为4000+5400=9400元,
∴,
解得:.
【点睛】
本题主要考查二元一次方程组的应用,解题的关键是找准题干中的等量关系.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试达标测试,共20页。试卷主要包含了如图,9个大小等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共19页。试卷主要包含了解方程组的最好方法是,如图,9个大小,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步达标检测题,共18页。试卷主要包含了用代入消元法解关于,若方程组的解为,则方程组的解为等内容,欢迎下载使用。