北京课改版七年级下册第五章 二元一次方程组综合与测试一课一练
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试一课一练,共24页。试卷主要包含了解方程组的最好方法是,下列方程是二元一次方程的是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知是二元一次方程的一组解,则m的值是( )
A. B.3 C. D.
2、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48 B.52 C.58 D.64
3、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )
A.﹣ B. C. D.﹣
4、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为( )
A.6 B.8 C.10 D.12
5、已知 是方程的一个解, 那么的值是( ).
A.1 B.3 C.-3 D.-1
6、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )
A.2 B.1 C. D.0
7、解方程组的最好方法是( )
A.由①得再代入② B.由②得再代入①
C.由①得再代入② D.由②得再代入①
8、下列方程组中,属于二元一次方程组的是( )
A. B. C. D.
9、下列方程是二元一次方程的是( )
A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=1
10、下列是二元一次方程的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有2千克A粗粮,3千克B粗粮,3千克C粗粮;乙种粗粮每袋装有4千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中A、B、C三种粗粮的成本价之和.已知每袋甲种粗粮的成本比每袋乙种粗粮的成本高10%,每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;当电商销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的数量之比是______.
2、已知是关于、的二元一次方程组的解,则的值为__________.
3、若与是同类项,则x= ________,y= ________.
4、在第四个“中国农民丰收节”来临之际,中国邮政推出了“城市邮票”盲盒,盲盒内含不同丰收场景的邮票,其中A,B,C三种邮票最受消费者喜爱.故中国邮政准备加印这三种邮票单独售卖.A,B,C三种邮票分别加印各自原有数量的2倍,3倍,2倍.加印后,这三种邮票原有总数量占加印邮票总数量的,若印制A,B,C三种邮票的单张费用之比为3:2:15,且加印B邮票的总费用是加印三种邮票总费用的,则A邮票原有数量与三种邮票原有总数量之比为______________.
5、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨,洁柔超值装的价格是其促销价的,而妮飘进口装的价格在其第一天的基础上增加了,第二天洁柔体验装与妮飘进口装的销量之比为,洁柔超值装的销量比第一天的销量减少了.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:
2、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为;51的正因数有1、3、17、51,它的真因数之和为,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为,而,所以8的亲和数为,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.
(1)10的真因数之和为_______;
(2)求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;
(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.
3、阅读材料:
在解方程组时,萌萌采用了一种“整体代换”的解法.
解:将方程②变形:,即③
把方程①代入③得,
∴,
把代入①,得,
∴原方程组的解为.
请模仿萌萌的“整体代换”法解方程组
4、判断下列各组数是否是二元一次方程组的解.
(1) (2)
5、(1)解二元一次方程组
(2)现在你可以用哪些方法得到方程组的解?请你对这些方法进行比较.
---------参考答案-----------
一、单选题
1、A
【分析】
把代入5x+3y=1即可求出m的值.
【详解】
把代入5x+3y=1,得
10+3m=1,
∴m=-3,
故选A.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
2、B
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
3、B
【分析】
解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.
【详解】
解:,
①+②得:2x=14k,即x=7k,
将x=7k代入①得:7k+y=5k,即y=﹣2k,
将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,
解得:k=.
故选:B.
【点睛】
此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.
4、D
【分析】
设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.
【详解】
解:设甲组人数为人,乙组人数为人,
由题意得:,
将①代入②得:,
解得,
即原来乙组的人数为12人,
故选:D.
【点睛】
本题考查了二元一次方程组的应用,正确建立方程组是解题关键.
5、A
【分析】
把x=1,y=-1代入方程2x-ay=3中,解关于a的方程,即可求出a的值.
【详解】
解:把x=1,y=-1代入方程2x-ay=3中,得:
2×1-a×(-1)=3,
2+a=3,
a=1.
故选:A.
【点睛】
本题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.
6、D
【分析】
解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.
【详解】
解:,
①+②得
2x=2a+6,
x=a+3,
把代入①,得
a+3+y=-a+1,
y=-2a-2,
∵x+2y=﹣1
∴a+3+2(-2a-2)=-1,
∴a=0,
故选D.
【点睛】
本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.
7、C
【分析】
观察两方程中系数关系,即可得到最好的解法.
【详解】
解:解方程组的最好方法是由①得,再代入②.
故选:C.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
8、C
【分析】
根据二元一次方程组的定义求解即可.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.
【详解】
解:A、中有3个未知数,不是二元一次方程组,不符合题意;
B、未知数x的次数是2,不是二元一次方程组,不符合题意;
C、由两个一次方程组成,并含有两个未知数,故是二元一次方程组,符合题意;
D、中xy的次数是2,不是二元一次方程组,不符合题意.
故选:C.
【点睛】
此题考查了二元一次方程组的定义,解题的关键是熟练掌握二元一次方程组的定义.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.
9、C
【分析】
根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.
【详解】
解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,
∴x﹣xy=1不是二元一次方程;
B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,
∴x2﹣y﹣2x=1不是二元一次方程;
C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,
∴3x﹣y=1是二元一次方程;
D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,
∴﹣2y=1不是二元一次方程.
故选:C.
【点睛】
此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
10、B
【分析】
由二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,解答即可.
【详解】
解:A、不是二元一次方程,只含有一个未知数,不符合题意;
B、是二元一次方程,符合题意;
C、不是二元一次方程,未知项的次数为2,不符合题意;
D、不是二元一次方程,未知项的次数为2,不符合题意;
故选B
【点睛】
本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程,掌握二元一次方程的概念是解题的关键.
二、填空题
1、10:9##
【解析】
【分析】
设A的单价为x元,B的单价为y元,C的单价为z元,可得甲的成本,乙的成本;再求出甲、乙的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.
【详解】
解:设A的单价为x元,B的单价为y元,C的单价为z元,甲种粗粮的售价为m元,乙种粗粮的售价为n元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得
甲一袋的成本是2x+3y+3z,
乙一袋的成本是4x+2y+2z,
2x+3y+3z=(4x+2y+2z) ×(1+10%),
化简得,3x=y+z,
甲一袋的成本是11x,乙一袋的成本是10x,
∵每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.
∴m-11x=(n-10x)(1+50%),
当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;
∴2(n-10x)(1+50%)+n-10x=(2×11x+10x)×25%,
解得,n=12x,
∴m=14x,
甲一袋的售价为14x,乙一袋的售价为12x,
根据甲乙的利润,得
(14x﹣11x)a+(12x -10x)b=(11x a+10xb)×24%
化简,得
3a+2b=2.64a+2.4b
0.36a=0.4b
a:b=10:9,
故答案为:10:9.
【点睛】
本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.
2、7
【解析】
【分析】
把代入,求出m和n的值,然后可求m+2n的值.
【详解】
解:∵是关于x、y的二元一次方程组的解 ,
∴,
解得:,
∴m+2n=-4+11=7.
故答案为:7.
【点睛】
本题考查了对二元一次方程组的解的理解与应用,理解与掌握二元一次方程组的解的概念以及能熟练解二元一次方程组是解决此题的关键.
3、 2 -1
【解析】
【分析】
根据同类项的概念建立关于x,y的方程组,解方程组即可得出答案.
【详解】
∵与是同类项,
解得
故答案为:2,-1.
【点睛】
本题主要考查同类项,掌握同类项的概念及解二元一次方程组的方法是关键.
4、##7:12
【解析】
【分析】
设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,依题意列出方程组,求解即可.
【详解】
解:设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,
由题意得:,
由②得:,即③;
把③代入①得:,
整理得:,即,
把代入③得:,
∵A邮票原有数量与三种邮票原有总数量之比为,
∴,
∴A邮票原有数量与三种邮票原有总数量之比为,
故答案为:.
【点睛】
本题主要考查了列三元一次方程组的应用,列代数式,求代数式的值,关键是正确设元,并列出方程组.
5、
【解析】
【分析】
设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,第二天,洁柔体验装的原价为: ,销售量为包,洁柔超值装的原价为: ,销售量为包,妮飘进口装的原价为: ,销售量为 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得,进而可得 为整数,即可求得,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 ,由 都是整数,则 能被 和整除的数即能被整除,即可求得,则这两天妮飘进口装的总销售额为,即 ,代入数值求解即可.
【详解】
解:设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,
,, 则
第二天,洁柔体验装的原价为:,销售量为包,洁柔超值装的原价为:,销售量为包,妮飘进口装的原价为:,销售量为包,
,即
则
第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元
即
即
或
为整数,
解得或
洁柔体验装的原价为:是整数,则,洁柔超值装的原价为:是整数则
第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,
即
解得
都是整数,则能被和整除的数即能被整除
故答案为:14960
【点睛】
本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键.
三、解答题
1、.
【分析】
根据解二元一次方程组的方法,得到③,得到④,消元得解,然后代入①求解即可.
【详解】
解:,
得:,
得:,
得:,
解得:,
将代入①得:,
∴方程组的解为:.
【点睛】
题目主要考查二元一次方程组的解法,熟练掌握加减消元法是解题关键.
2、(1)8;(2)见解析;(3)10461,11451,12441.
【分析】
(1)先求出10的真因数,再求10的真因数之和即可;
(2)先把给出的数用代数式表示,,根据要求列代数式得=,说明括号中的数为整式即可;
(3)设五位“两头蛇数”为(),先求出16的真因数之和15,找到16的亲和数为 ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为,可得能被33整除,根据,且,得出能被33整除得出即可.
【详解】
.解:(1)10的真因数为1,2,5,
10的真因数之和为1+2+5=8,
故答案为8;
(2),,
∵,
=,
=,
又因为,的整数,
∴为整数,
一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;
(3)设五位“两头蛇数”为(),
∵末位数为1,
∴不能被2(真因数)整除,
∵16的真因数之和,
∴16的亲和数为 ,
能被33整除,
能被33整除,
又2不能被33整除,
能被33整除,
,且,
∴,
或.
或(舍去),
,
,
∴或或,
所以五位“两头蛇数”为10461,11451,12441.
【点睛】
本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.
3、.
【分析】
将方程②变形为2(4x-3y)-y=18,再将4x-3y=6整体代入即可求方程组.
【详解】
解:中,
将②变形,得:8x-6y-y=18即2(4x-3y)-y=18③,
将①代入③得,2×6-y=18,
∴y=-6,
将y=-6代入①得,x=-3,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,熟练掌握加减消元法和代入消元法解二元一次方程组,体会整体思想解方程组的便捷是解题的关键.
4、(1)不是方程组的解 ;(2)不是方程组的解
【分析】
根据二元一次方程的解,将二元一次方程的解代入方程计算即可.
【详解】
解:(1)把代入方程①中,左边=2,右边=2,所以是方程①的解.
把x=3,y=-5代入方程②中,左边=,右边=,左边≠右边,所以不是方程②的解.
所以不是方程组的解.
(2)把代入方程①中,左边=-6,右边=2,所以左边≠右边,所以不是方程①的解,
再把代入方程②中,左边=x+y=-1,右边=-1,左边=右边,所以是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.
【点睛】
本题考查了二元一次方程组的解,检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.
5、(1);(2)见解析
【分析】
(1)利用加减消元法解方程组;
(2)方法一:将两个方程分别化简再求解;方法二:根据(1)可得方程的解为,再利用加减法求解.
【详解】
解:(1),
由得16y=48,
∴y=3,
将y=3代入①得x=5,
∴这个方程组的解是;
(2)方法一:去括号得到方程组再解得结果;
方法二:由(1)解为,可得的解为,解得.
【点睛】
此题考查解二元一次方程组,掌握二元一次方程组的解法:代入法和加减法,(2)可灵活运用解题方法求解,渗透一定的整体换元思想和化归思想.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了若方程组的解为,则方程组的解为,已知方程组的解满足,则的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习,共18页。试卷主要包含了已知方程组中,x,如图,9个大小,二元一次方程的解可以是等内容,欢迎下载使用。
这是一份七年级下册第五章 二元一次方程组综合与测试达标测试,共20页。试卷主要包含了小明在解关于x等内容,欢迎下载使用。