数学北京课改版第五章 二元一次方程组综合与测试巩固练习
展开这是一份数学北京课改版第五章 二元一次方程组综合与测试巩固练习,共21页。试卷主要包含了有铅笔,在一次爱心捐助活动中,八年级,二元一次方程组的解是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、m为正整数,已知二元一次方程组有整数解则m2=( )
A.4 B.1或4或16或25
C.64 D.4或16或64
2、为迎接2022年北京冬奧会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )
A.2种 B.3种 C.4种 D.5种
3、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )
A.1个 B.2个 C.3个 D.4个
4、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )
A.1.2元 B.1.05元 C.0.95元 D.0.9元
5、关于x,y的方程是二元一次方程,则m和n的值是( )
A. B. C. D.
6、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组( )
A.5组 B.6组 C.7组 D.8组
7、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )
A. B.
C. D.
8、二元一次方程组的解是( )
A. B. C. D.
9、用代入法解方程组,以下各式正确的是( )
A. B.
C. D.
10、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知某加密规则为:明文,,,对应密文,,,.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,解密得到的明文是( )
A.6,4,1,7 B.1,6,4,7 C.4,6,1,7 D.7,6,1,4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若方程是关于,的二元一次方程,则_______.
2、已知二元一次方程组,则x+y=______.
3、已知方程组的解也是方程 的解,则a= _____,b= ____ .
4、若x,y满足方程组,则化数式的值为 _____.
5、某商铺去批发市场进货甲、乙、丙三种商品,商品甲、乙、丙的进货量之比为4:2:3,且均为整数.回到商铺后,将三种商品的进价标签混淆了(进价均为整数).若随机抽出两个标签,求出进价之和,再乘以购进商品甲的进货量,为2736元;若随机抽出两个标签,求出进价之和,再乘以购进商品乙的进货量,为1596元;若随机抽出两个标签,求出进价之和,再乘以购进商品丙的进货量,为1368元.则三种商品的进价按有小到大的比为__________.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:
(1)
(2)
2、如图,已知点A、点B在数轴上表示的数分别是-20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?
3、(1)用“>”“<”或“=”填空:_____ ;______;_____;______;归纳:若a、b异号时,______,若a、b同号或至少有一个为0时,____;
(2)根据上题中得出的结论,若,,求的值.
4、已知关于,的方程组,若该方程组的解,的值互为相反数,求的值和方程组的解.
5、请用指定的方法解下列方程组:
(1);(代入法)
(2).(加减法)
---------参考答案-----------
一、单选题
1、D
【分析】
把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.
【详解】
解:,
①-②得:(m-3)x=10,
解得:x=,
把x=代入②得:y=,
由方程组为整数解,得到m-3=±1,m-3=±5,
解得:m=4,2,-2,8,
由m为正整数,得到m=4,2,8
则=4或16或64,
故选:D.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
2、B
【分析】
设购买甲种奖品为x件,乙种奖品为y件,由题意可得,进而求解即可.
【详解】
解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:
,
∴,
∵,且x、y都为正整数,
∴当时,则;
当时,则;
当时,则;
当时,则(不合题意舍去);
∴购买方案有3种;
故选B.
【点睛】
本题主要考查二元一次方程的应用,正确理解题意、掌握二元一次方程整数解求解的方法是解题的关键.
3、C
【分析】
设这对夫妇的年龄的和为x,子女现在的年龄和为y,这对夫妇共有z个子女;根据本题中的三个等量关系为:此夫妇现在的年龄和=6×其子女现在的年龄和;此夫妇两年前的年龄和=10×其子女两年前的年龄和;此夫妇6年后的年龄和=3×其子女6年后的年龄和.可列出方程组,解方程组即可.
【详解】
设现在这对夫妇的年龄和为x岁,子女现在的年龄和为y岁,这对夫妇共有z个子女,则,
解得
这对夫妇共有3个子女.
故选C.
【点睛】
本题考查了三元一次方程组的应用,根据题意列出方程组并解方程组是解题的关键.
4、B
【分析】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.
【详解】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,
根据题意得:,
②–①可得:.
故选:B.
【点睛】
本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.
5、C
【分析】
根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.
【详解】
解:由题意可得:,即
①+②得:,解得
将代入①得,
故
故选:C
【点睛】
此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.
6、B
【分析】
设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,根据题意得方程8x+7y+(12﹣x﹣y)×5=80,于是得到结论.
【详解】
解:设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,
由题意得,8x+7y+(12﹣x﹣y)×5=80,
∴3x+2y=20,
当x=1时,y=,
当x=2时,y=7,
当x=4时,y=4,
当x=6时,y=1,
∴8人组最多可能有6组,
故选B.
【点睛】
本题考查了二元一次方程的应用,正确的理解题意是解题的关键.
7、C
【分析】
根据题意,x+y=40,5x+10y=275,判断即可.
【详解】
根据题意,得x+y=40,5x+10y=275,
∴符合题意的方程组为,
故选C.
【点睛】
本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.
8、C
【分析】
根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.
【详解】
解:,
由①+②,得11x=33,
解得:x=3,
把x=3代入①,得9+2y=13,
解得:y=2,
所以方程组的解是,
故选:C.
【点睛】
本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.
9、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
10、A
【分析】
根据第四个密文列方程4d=28,解一元一次方程求出d,再根据第三个密文,列二元一次方程把d代入,求出第三个明文c,根据第二个密文列二元一次方程,代入第三个明文c,求出第二个明文b,根据第一个密文列二元一次方程,代入第二个明文b,求出第一个明文a得到明文为a,b,c,d即可.
【详解】
解:设明文为a,b,c,d,
∵某加密规则为:明文,,,对应密文,,,.
根据密文14,9,23,28,
4d=28,
解得d=7,
=23,
把d=7代入=23得
解得
=9,
把代入=9得,
解得
a+2b=14,
把代入a+2b=14得a+2×4=14,
解得a=6,
则得到的明文为6,4,1,7.
故选:A.
【点睛】
此题考查了一元一次方程与二元一次方程的应用,弄清题意分步列出方程是解本题的关键.
二、填空题
1、-1
【解析】
【分析】
根据 二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程,求出,的值即可得出答案.
【详解】
解:方程是关于,的二元一次方程,
,
,
,
故答案为:.
【点睛】
本题考查了二元一次方程的概念以及有理数的乘方运算,根据二元一次方程的概念得出,的值是解本题的关键.
2、3
【解析】
【分析】
用加减消元法解二元一次方程组即可.
【详解】
解:∵,
①+②,得4x+4y=12,
∴x+y=3,
故答案为:3.
【点睛】
本题考查二元一次方程组的解,熟练掌握加减消元法解二元一次方程组是解题的关键.
3、 3 1
【解析】
【分析】
根据同解原理将方程组重新组合,解方程组求出,然后代入求解即可.
【详解】
解:∵方程组的解也是方程 的解,
重新组合,
①×7-②得:
,
x=2,
把x=2代入①得y=1
∴,
代入 ,得关于a、b的方程组,
解得
故答案为3;1.
【点睛】
本题考查方程组同解问题,掌握方程组同解可以重新调整方程组成新方程组是解题关键.
4、0
【解析】
【分析】
二元一次方程组两式相加得x+y=2,两式相减得x-y=4,将结果代入=0.
【详解】
∵
令有
∴
令有
∴
将,代入得
.
故答案为:0.
【点睛】
本题考查了已知式子的值解代数式值和解二元一次方程组,通过加减消元法化简二元一次方程组,得出所求代数式中含有的部分,再代入计算即可.
5、3:5:9
【解析】
【分析】
由题意设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,继而依据进货量均为整数,进价均为整数得出三种商品的进价后即可得出答案.
【详解】
解:设甲、乙、丙的进货量分别为4x、2x、3x,
三种商品的进价按有小到大分别设为:a、b、c,
则随机抽出两个标签进价之和可知:,
由题意可得第一次抽出两个标签进价之和为:,
第二次抽出两个标签进价之和为:,
第三次抽出两个标签进价之和为:,
又因为,所以< < ,
即第一、二、三次抽出两个标签进价之和分别为:a+c、b+c、a+b,
进而可得,
①+②+③得出,且,进货量均为整数,进价均为整数
可得,则有,
解得:,
所以三种商品的进价按有小到大的比为:.
故答案为:3:5:9.
【点睛】
本题考查不定方程的应用,读懂题意根据题意列出方程并利用消元思维进行分析是解题的关键.
三、解答题
1、(1);(2)
【分析】
(1)方程组利用代入消元法求解即可;
(2)方程组整理后,方程组利用加减消元法求解即可.
【详解】
(1)
将①代入②得:
去括号,合并同类项得:
移项,系数化为1,解得:
代入①中,解得:
∴方程组的解为:;
(2)
方程②去分母得:,整理得:
①×2得:
③+④得:,解得:
代入①得:
∴方程组的解为:.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.
2、动点M每秒运动5个单位长度,动点N每秒运动2个单位长度
【分析】
设动点M、N运动的速度分别是每秒x、y个单位长度,根据“若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.”列出方程组,解出即可.
【详解】
解:设动点M、N运动的速度分别是每秒x、y个单位长度,
∵点A、B表示的数分别是-20、64,
∴线段AB长为,
∴由题意有,
解得
∴动点M每秒运动5个单位长度,动点N每秒运动2个单位长度.
【点睛】
本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
3、(1)>,=,=,=,>,=;(2)
【分析】
(1)分别计算各种情况的绝对值,再比较大小,再总结规律即可.
(2)由,,可得 可得异号,再分两种情况讨论即可.
【详解】
解:(1)
所以:>,
所以=,
所以=,
所以=,
归纳:若a、b异号时,>,
若a、b同号或至少有一个为0时,=;
(2) ,,
异号,
当
即
或
解得: 或
当
或
解得:或
故的值为:
【点睛】
本题考查的是绝对值的含义与化简,绝对值方程的应用,二元一次方程组的解法,正确的理解题意,利用总结出的规律解决问题是解本题的关键.
4、,
【分析】
根据x、y互为相反数得出y=-x,代入方程组中的两个方程求解即可.
【详解】
解:因为,的值互为相反数,所以.
将代入中,得,
解得,所以,所以原方程组的解是,
将,代入中,得:.
【点睛】
本题考查相反数、解二元一次方程组,理解相反数的意义以及二元一次方程组的解,正确求出方程组的解是解答的关键.
5、(1);(2).
【分析】
(1)把②代入①得出3(y+3)+2y=14,,求出y,把y=1代入②求出x即可;
(2)②×3-①×4得: x=3,,把x=3代入①求出y即可.
【详解】
解:(1)(代入法),
把②代入①得:3(y+3)+2y=14,
解得:y=1,
把y=1代入②得:x=1+3=4,
所以方程组的解是;
(2).(加减法)
②×3-①×4得: x=3,
把x=3代入①得:6+3y=12,
解得:y=2,
所以方程组的解.
【点睛】
本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共20页。试卷主要包含了已知方程组中,x等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题
这是一份2021学年第五章 二元一次方程组综合与测试一课一练,共21页。试卷主要包含了已知二元一次方程组则等内容,欢迎下载使用。