2020-2021学年第五章 二元一次方程组综合与测试课后练习题
展开
这是一份2020-2021学年第五章 二元一次方程组综合与测试课后练习题,共19页。试卷主要包含了已知,则,解方程组的最好方法是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程组中,是二元一次方程组的是( )A. B. C. D.2、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=83、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )A.6或 B.2或6 C.2或 D.2或4、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )A.﹣ B. C. D.﹣5、已知是方程5x−ay=15的一个解,则a的值为( )A.5 B.−5 C.10 D.−106、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为( )A.6 B.8 C.10 D.127、已知,则( )A. B. C. D.8、解方程组的最好方法是( )A.由①得再代入② B.由②得再代入①C.由①得再代入② D.由②得再代入①9、下列各方程中,是二元一次方程的是( )A.=y+5x B.3x+2y=2x+2y C.x=y2+1 D.10、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )A.9 B.7 C.5 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个两位数,个位上的数字与十位上的数字之和是10,把这个两位数的个位和十位上的数字调换位置后,得到的数比原来大18,则调换后的数为____.2、我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说:“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”设共有x辆车,y人,则______,______.3、若与的和是单项式,则m=_______,n=_______.4、已知,用含的式子表示,其结果是_______.5、已知实数x,y满足x+y=3,且x>﹣3,y≥1,则x﹣y的取值范围____.三、解答题(5小题,每小题10分,共计50分)1、某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?2、已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.3、解方程组或不等式组:(1);(2).4、若方程组是二元一次方程组,求a的值.5、解下列方程或方程组:(1)4x﹣2=2x+3.(2)=2.(3). ---------参考答案-----------一、单选题1、C【分析】根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的,故本选项错误;B.方程组中含有3个未知数,故本选项错误;C. 符合二元一次方程组的定义,故本选项正确;D. 第二个方程中的xy是二次的,故本选项错误.故选C.【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,判断各选项即可.2、A【分析】把代入求出;再把代入求出数■即可.【详解】解:把代入得,,解得,;把代入得,,解得,;故选A【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.3、A【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为x cm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,,解得,,即点Q的运动速度cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,,解得:,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度或6cm/s时能使两三角形全等.故选:A.【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.4、B【分析】解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.【详解】解:,①+②得:2x=14k,即x=7k,将x=7k代入①得:7k+y=5k,即y=﹣2k,将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=.故选:B.【点睛】此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.5、A【分析】把与的值代入方程计算即可求出的值.【详解】解:把代入方程,得,解得.故选:.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6、D【分析】设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.【详解】解:设甲组人数为人,乙组人数为人,由题意得:,将①代入②得:,解得,即原来乙组的人数为12人,故选:D.【点睛】本题考查了二元一次方程组的应用,正确建立方程组是解题关键.7、B【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【详解】解:由题意可知: 解得: ,故选:B.【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.8、C【分析】观察两方程中系数关系,即可得到最好的解法.【详解】解:解方程组的最好方法是由①得,再代入②.故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9、D【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【详解】解:A、不是整式方程;故错误.B、3x+2y=2x+2y移项,合并同类项,得x=0,只有一个未知数;故错误.C、未知数y最高次数是2;故错误.D、是二元一次方程,故正确.故选:D.【点睛】本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.10、C【分析】先求出的解,然后代入可求出a的值.【详解】解:,由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得2a-y=a,∴y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7,故选C.【点睛】本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.二、填空题1、64【解析】【分析】设原来两位数的十位为x,个位为y,根据个位上的数字与十位上的数字之和为10,把个位上的数字与十位上的数字调换位置后,得到新的两位数比原数大18,列方程组求解.【详解】解:设原来两位数的十位为x,个位为y,由题意得, ,解得:,即调换后的数为64.故答案为:64.【点睛】本题考查了二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.2、 15 39【解析】【分析】设有x辆车,有y人,根据“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘”列出方程组,解之即可.【详解】解:设有x辆车,有y人,依题意得:,解得,,故答案为:15,39.【点睛】本题考查了二元一次方程组的应用,找准等量关系是解此题的关键.3、 1 ##-0.5【解析】【分析】单项式与的和仍是一个单项式,就是说它们是同类项.由同类项的定义(所含字母相同,相同字母的指数相同)可得,解方程即可求得m和n的值.【详解】解:由题意知单项式与是同类项,所以有,解得.故答案为:1;.【点睛】此题考查了合并同类项,以及单项式,熟练掌握合并同类项法则是解本题的关键.4、【解析】【分析】先将化成,然后再代入化简即可.【详解】解:∵,∴,∴,故答案是:.【点睛】本题考查了利用代入消元法解二元一次方程及其应用,熟练掌握运算法则是解本题的关键.5、【解析】【分析】先设x﹣y=m,利用x+y=3,构造方程组,求出用m表示x、y的代数式,再根据x>﹣3,y≥1,列不等式求出m的范围即可.【详解】解:设x﹣y=m,∴,②+①得,②-①得,∵y≥1,∴,解得,∵x>﹣3,∴,解得,∴,x﹣y的取值范围.故答案为.【点睛】本题考查方程与不等式综合问题,解题关键是设出x﹣y=m,与x+y=3,构造方程组从中求出,,再出列不等式.三、解答题1、(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.【分析】(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;(2)根据(1)所求得结果进行求解即可.【详解】解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,根据题意得:,解得:, 答:A种树苗每棵的价格40元,B种树苗每棵的价格10元; (2)=1140元。答:总费用需1140元.【点睛】本题考查二元一次方程组的应用,正确理解题意列出方程求解是解题的关键.2、(1)﹣2<m≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为,然后根据x为非正数,y为负数,即x≤0,y<0,列出不等式求解即可;(2)先把原不等式移项得到(2m+1)x<2m+1.根据不等式(2m+1)x﹣2m<1的解为x>1,可得2m+1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组用①+②得:,解得③,把③代入②中得:,解得,∴方程组的解为:.∵x为非正数,y为负数,即x≤0,y<0,∴.解得﹣2<m≤3;(2)(2m+1)x﹣2m<1移项得:(2m+1)x<2m+1.∵不等式(2m+1)x﹣2m<1的解为x>1,∴2m+1<0,解得m.又∵﹣2<m≤3,∴m的取值范围是﹣2<m.又∵m是整数,∴m的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.3、(1);(2).【分析】(1)利用代入消元法求解即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1)由②得:③,将③代入①得,解得将代入③得: ∴方程组的解为:;(2)解不等式组由①得:,解得,由②得:,解得,∴不等式组的解集为:.【点睛】本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法.4、a=﹣3【分析】根据了二元一次方程组的定义,可得 且a﹣3≠0,解出即可【详解】解:∵方程组是二元一次方程组,∴ 且a﹣3≠0,∴a=﹣3.【点睛】本题主要考查了二元一次方程组的定义,熟练掌握含有两个未知数,且未知数的次数都是1的整式方程是二元一次方程,而由两个二元一次方程组成的方程组就是二元一次方程组是解题的关键.5、(1)x=;(2)x=﹣4;(3)【分析】(1)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可;(2)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可;(3)用加减消元法求解即可.【详解】解:(1)4x﹣2=2x+3,移项,得4x﹣2x=3+2,合并同类项,得2x=5,系数化为1,得x=;(2)=2,去分母,得4(x+1)﹣9x=24,去括号,得4x+4﹣9x=24,移项,得4x﹣9x=24﹣4,合并同类项,得﹣5x=20,系数化为1,得x=﹣4;(3),②﹣①×3,得x=﹣1,把x=﹣1代入①,得﹣1﹣y=2,解得y=﹣3,故方程组的解为.【点睛】本题考查了一元一次方程的解法,以及二元一次方程组的解法,熟练掌握求解步骤是解答本题的关键.解二元一次方程组的基本思路是消元,消元的方法有:加减消元法和代入消元法两种.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题,共16页。试卷主要包含了若是关于x,用代入消元法解关于等内容,欢迎下载使用。
这是一份初中数学第五章 二元一次方程组综合与测试课时练习,共17页。
这是一份数学七年级下册第五章 二元一次方程组综合与测试习题,共19页。试卷主要包含了若是方程的解,则等于等内容,欢迎下载使用。