初中数学第五章 二元一次方程组综合与测试一课一练
展开京改版七年级数学下册第五章二元一次方程组综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A. B.
C. D.
2、小明在解关于x、y的二元一次方程组时得到了正确结果.后来发现、处被墨水污损了,请你帮他计算出、处的值分别是( ).
A.1、1 B.2、1 C.1、2 D.2、2
3、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8
4、下列方程组中,属于二元一次方程组的是( )
A. B. C. D.
5、已知方程,,有公共解,则的值为( ).
A.3 B.4 C.0 D.-1
6、已知关于x,y的二元一次方程组的解是,则a+b的值是( )
A.1 B.2 C.﹣1 D.0
7、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
8、方程x+y=6的正整数解有( )
A.5个 B.6个 C.7个 D.无数个
9、下列各方程中,是二元一次方程的是( )
A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=1
10、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )
A.60厘米 B.80厘米 C.100厘米 D.120厘米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、方程组有正整数解,则正整数a的值为________.
2、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.
3、一个两位数,个位上的数字与十位上的数字之和是10,把这个两位数的个位和十位上的数字调换位置后,得到的数比原来大18,则调换后的数为____.
4、如图所示,矩形ABCD被分成一些正方形,已知AB=32cm,则矩形的另一边AD=________cm.
5、现有20吨货物,要租用货车运走.汽车公司有两种货车,大货车每车可以装7吨货物,运一次要600元,小货车每车可以装4吨,运一次要400元.要使货物全部运走,至少需要运费___元.
三、解答题(5小题,每小题10分,共计50分)
1、为了响应“阳光运动一小时”校园体育活动,我校计划再购买一批篮球,已知购买2个品牌的篮球和3个品牌的篮球共需380元;购买4个品牌的篮球和2个品牌的篮球共需360元.
(1)求、两种品牌的篮球的单价.
(2)我校打算网购20个品牌的篮球和3个品牌的篮球,“双十一”期间,京东购物打折促销,其中品牌打八折,品牌打九折,问:学校购买打折后的篮球所花的费用比打折前节省了多少钱?
2、在解方程组时,由于小明看错了方程①中的a,得到方程组的解为,小华看错了方程②中的b,得到方程组的解为x=2,y=1.
(1)求a、b的值;
(2)求方程组的正确解.
3、为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.
(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.
(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?
4、若关于x,y的方程组与的解相同,求a,b的值;
5、m取哪些整数时,方程组的解是正整数?求出正整数解
---------参考答案-----------
一、单选题
1、B
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
2、B
【分析】
将方程组的解代入方程求解即可.
【详解】
将代入,得,
解之得.
故选:B.
【点睛】
此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.
3、A
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
4、C
【分析】
根据二元一次方程组的定义求解即可.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.
【详解】
解:A、中有3个未知数,不是二元一次方程组,不符合题意;
B、未知数x的次数是2,不是二元一次方程组,不符合题意;
C、由两个一次方程组成,并含有两个未知数,故是二元一次方程组,符合题意;
D、中xy的次数是2,不是二元一次方程组,不符合题意.
故选:C.
【点睛】
此题考查了二元一次方程组的定义,解题的关键是熟练掌握二元一次方程组的定义.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.
5、B
【分析】
联立,,可得:,,将其代入,得值.
【详解】
,解得,
把代入中得:,
解得:.
故选:B.
【点睛】
本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.
6、B
【分析】
将代入即可求出a与b的值;
【详解】
解:将代入得:
,
∴a+b=2;
故选:B.
【点睛】
本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.
7、A
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
8、A
【分析】
根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可
【详解】
解:方程的正整数解有,,,,共5个,
故选:A.
【点睛】
本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.
9、D
【分析】
根据二元一次方程的定义逐一排除即可.
【详解】
解:A、=y+5x不是二元一次方程,因为不是整式方程;
B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;
C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;
D、x+y=1是二元一次方程.
故选:D.
【点睛】
此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
10、D
【分析】
设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;
【详解】
设小长方形的长为x,小长方形的宽为y,
根据题意可得:,
解得:,
∴每个小长方形的周长是;
故选D.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
二、填空题
1、2
【解析】
【分析】
先消去 求解再由为正整数,分类求解 结合为正整数求解 再检验此时的是否满足也为正整数,从而可得答案.
【详解】
解:
②得:
①-③得:
当时,方程无解,
当时,方程的解为:
为正整数,
或或或
解得:或或或
为正整数,
当为正整数,由②得:也为正整数,
所以
故答案为:2
【点睛】
本题考查的是二元一次方程的正整数解,掌握“解二元一次方程组的方法及分类讨论”是解本题的关键.
2、
【解析】
【分析】
由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.
【详解】
解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.
3、64
【解析】
【分析】
设原来两位数的十位为x,个位为y,根据个位上的数字与十位上的数字之和为10,把个位上的数字与十位上的数字调换位置后,得到新的两位数比原数大18,列方程组求解.
【详解】
解:设原来两位数的十位为x,个位为y,
由题意得, ,
解得:,
即调换后的数为64.
故答案为:64.
【点睛】
本题考查了二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
4、29
【解析】
【分析】
可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求矩形另一边AD的长即可,仍可用xy表示出来.
【详解】
解:设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y表示出来(如图),
根据AB=CD=32cm,可得,
解得:,
矩形的另一边AD=x+2y+y+2y=x+5y=29cm.
故答案为:29.
【点睛】
本题考查了整式乘法运算的应用,二元一次方程组的应用,解题的关键是读懂图意根据矩形的性质列出方程组并求解.
5、1800
【解析】
【分析】
设需要大货车为x次,需要小货车为y次,根据题意列出方程,求出的范围,分三种情况进行讨论,分别求解每种情况所需运费,即可求解.
【详解】
解:设需要大货车为x次,需要小货车为y次,由题意可得
∵都为非负的整数
∴
当时,,需要小货车运送0次,费用为(元)
当时,,需要小货车运送2次,费用为(元)
当时,,需要小货车运送4次,费用为(元)
当时,,需要小货车运送5次,费用为(元)
∵
∴最低费用为1800元
故答案为:1800
【点睛】
此题考查了方案的选择问题,解题的关键是理解题意,正确求出每种情况下的费用.
三、解答题
1、(1)A品牌的篮球的单价为40元/个,B品牌的篮球的单价为100元/个;(2)学校购买打折后的篮球所花的费用比打折前节省了190元.
【分析】
(1)设A品牌的篮球的单价为x元/个,B品牌的篮球的单价为y元/个,根据“购买2个A品牌的篮球和3个B品牌的篮球共需380元;购买4个A品牌的篮球和2个B品牌的篮球共需360元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量,列式计算,即可求出结论.
【详解】
解:(1)设A品牌的篮球的单价为x元/个,B品牌的篮球的单价为y元/个,
根据题意得:,
解得:.
答:A品牌的篮球的单价为40元/个,B品牌的篮球的单价为100元/个;
(2)20×40×(1-0.8)+3×100×(1-0.9)=190(元).
答:学校购买打折后的篮球所花的费用比打折前节省了190元.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据总价=单价×数量,列式计算.
2、(1),;(2) ,
【分析】
(1)根据方程组的解的定义,应满足方程②,x=2,y=1应满足方程①,将它们分别代入方程②①,就可得到关于a,b的二元一次方程组,解得a,b的值;
(2)将a,b代入原方程组,求解即可.
【详解】
解:(1)将代入②得,解得:
将x=2,y=1代入①得,解得: ,
∴,;
(2)方程组为:,
①+②得: ,
,
解得: ,
将代入①得: ,
,
解得: ,
∴方程组的解为 .
【点睛】
本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a、b的值是解(2)的关键.
3、(1)第一档电价为0.59元/度,第二档的电价为0.64元/度.(2)小军家4月份的电费为94.4元,5月份的电费为138.2元.
【分析】
(1)设第一档的电价为x元/度,第二档的电价为y元/度,根据2月分的电费及3月份的电费可列出关于x与y的方程组,解方程组即可;
(2)按照阶梯电价的计算方法计算,4月份按第一档计算电费,5月份按第二档计算电费即可.
【详解】
(1)设第一档的电价为x元/度,第二档的电价为y元/度,
依题意,得:,
解得:.
即第一档电价为0.59元/度,第二档的电价为0.64元/度.
(2)0.59×160=94.4(元),
0.59×180+0.64×(230﹣180)=138.2(元).
所以小军家4月份的电费为94.4元,5月份的电费为138.2元.
【点睛】
本题考查了二元一次方程组解决分段问题的应用,关键是理解题意,找到等量关系并正确列出方程组.
4、
【分析】
由题意可先解方程组,求出x、y后代入含a、b的两个方程,进一步即可求出结果;
【详解】
解:解方程组,得,
代入,得,
解得
【点睛】
本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键.
5、当m=-3时,;当m=-2时,;当m=0时,.
【分析】
由第二个方程得到x=2y,然后利用代入消元法求出y,再根据方程组的解是正整数求出m的值,进而求出方程的解即可.
【详解】
解:,
由②得,x=2y③,
③代入①得,4y+my=4,
∴y=,
∵方程组的解是正整数,
∴4+m=1或4+m=2或4+m=4,
解得m=-3或m=-2或m=0,
当m=-3时,;
当m=-2时,;
当m=0时,.
【点睛】
本题考查了二元一次方程组的解,用m表示出y,再根据题意确定一个方程的正整数解是解题的关键.
北京课改版七年级下册第五章 二元一次方程组综合与测试练习题: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共18页。试卷主要包含了小明在解关于x,解方程组的最好方法是,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
数学七年级下册第五章 二元一次方程组综合与测试同步测试题: 这是一份数学七年级下册第五章 二元一次方程组综合与测试同步测试题,共18页。试卷主要包含了下列方程是二元一次方程的是,已知是方程的解,则k的值为等内容,欢迎下载使用。
数学第五章 二元一次方程组综合与测试课堂检测: 这是一份数学第五章 二元一次方程组综合与测试课堂检测,共25页。试卷主要包含了已知关于x,如果与是同类项,那么的值是等内容,欢迎下载使用。