初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习题
展开
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共17页。试卷主要包含了如果x,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若是方程的解,则等于( )A. B. C. D.2、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=83、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想4、如果x:y=3:2,并且x+3y=27,则x与y中较小的值是( ).A.3 B.6 C.9 D.125、已知是二元一次方程的一组解,则m的值是( )A. B.3 C. D.6、《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为( )A. B.C. D.7、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )A.1个 B.2个 C.3个 D.4个8、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )A.9 B.7 C.5 D.39、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有( )A.5个 B.6个 C.7个 D.8个10、下列各式中是二元一次方程的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三个全等的小矩形沿“横一竖一横“排列在一个大的边长分别为12.34,23.45的矩形中,则图中一个小矩形的周长等于_________.2、已知方程组的解也是方程的解,则______,______.3、已知是关于x,y的二元一次方程组的解,则的值为____________.4、已知关于x,y的二元一次方程3mx-y=-1有一组解是,则m的值是 ___.5、如果与是同类项,则x-y的值是______.三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1)(2)2、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?3、某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?4、解方程组:.5、解方程组: ---------参考答案-----------一、单选题1、B【分析】把代入到方程中得到关于k的方程,解方程即可得到答案.【详解】解:∵是方程的解,∴,∴,故选B.【点睛】本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.2、A【分析】把代入求出;再把代入求出数■即可.【详解】解:把代入得,,解得,;把代入得,,解得,;故选A【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.3、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.4、B【分析】把x:y=3:2变形为x=y,联立解方程组即可.【详解】解:把x:y=3:2变形为:x=y.把x=y代入x+3y=27中:y=6.∴x=9.∴x、y中较小的是6.故选:B.【点睛】本题实质是解二元一次方程组,掌握代入消元法是解题的关键.5、A【分析】把代入5x+3y=1即可求出m的值.【详解】把代入5x+3y=1,得10+3m=1,∴m=-3,故选A.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.6、D【分析】根据题目中的等量关系列出二元一次方程组即可.【详解】解:设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为.故选:D.【点睛】此题考查了列二元一次方程组,解题的关键是根据题意找到题目中的等量关系.7、A【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.【详解】解:①x+y=6是二元一次方程;②x(x+y)=2,即不是二元一次方程;③3x-y=z+1是三元一次方程;④m+=7不是二元一次方程;故符合题意的有:①,故选A【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.8、C【分析】先求出的解,然后代入可求出a的值.【详解】解:,由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得2a-y=a,∴y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7,故选C.【点睛】本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.9、D【分析】设原来的两位数为10a+b,则新两位数为,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.【详解】解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.【点睛】本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:十位上的数+个位上的数,注意不要漏数.10、B【分析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】中x的次数为2,故A不符合题意;是二元一次方程,故B符合题意;中不是整式,故C不符合题意;中y的次数为2,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.二、填空题1、23.86【解析】【分析】设小矩形的长为x,宽为y,根据图形列出二元一次方程组,根据小矩形的周长为结合方程组直接可得.【详解】设小矩形的长为x,宽为y,由题意得:,①+②得,,则一个小矩形的周长为:.故答案为:【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.2、 3 1【解析】【分析】联立不含a与b的方程组成方程组求出x与y的值,代入剩下的方程求出a与b的值即可.【详解】解:联立得:,解得:,代入剩下的两方程得:,解得:,故答案为:3,1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3、0【解析】【分析】结合题意,根据二元一次方程组的性质,将代入到原方程组,得到关于a和b的二元一次方程组,通过求解即可得到a和b,结合代数式的性质计算,即可得到答案.【详解】∵是关于x,y的二元一次方程组的解∴将代入到,得∴∴故答案为:0.【点睛】本题考查了二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.4、-1【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把代入方程3mx-y=-1中得:3m+2=-1,解得:m=-1.故答案为:-1.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5、-1【解析】【分析】根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可.【详解】解:∵与是同类项,∴,∴,∴,故答案为:-1.【点睛】本题主要考查了同类项的定义和代数式求值,解题的关键在于能够熟练掌握同类项的定义.三、解答题1、(1);(2)【分析】(1)利用把两个方程相加先消去求解 再求解,从而可得方程组的解;(2)把方程①乘以3,再与方程②相加消去 求解 再求解 从而可得答案.【详解】解:(1)①+②得: 解得: 把代入①得: 解得: 所以方程组的解是 (2)①得: ②+③得: 解得: 把代入①得: 所以原方程组是解是【点睛】本题考查的是利用加减消元法解二元一次方程组,掌握“加减法解二元一次方程组”是解本题的关键.2、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x元、y元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m副军棋,则购买副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x元、y元,由题意得:,解得,∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m副军棋,则购买副跳棋,由题意得:,即,解得,∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.3、(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.【分析】(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;(2)根据(1)所求得结果进行求解即可.【详解】解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,根据题意得:,解得:, 答:A种树苗每棵的价格40元,B种树苗每棵的价格10元; (2)=1140元。答:总费用需1140元.【点睛】本题考查二元一次方程组的应用,正确理解题意列出方程求解是解题的关键.4、【分析】方程组利用加减消元法求出解即可.【详解】解:,①×2﹣②得:9y=12,解得:y=,把y=代入②得:6x+4=8,解得:x=,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、【分析】直接利用加减消元法解二元一次方程组即可.【详解】解:用①-②得:,把代入②中得:,解得,∴方程组的解为:.【点睛】本题主要考查了解二元一次方程组,熟练掌握加减消元法是解题的关键.
相关试卷
这是一份2021学年第五章 二元一次方程组综合与测试习题,共18页。试卷主要包含了已知关于x,若是方程的解,则等于,下列方程是二元一次方程的是,下列方程中,①x+y=6;②x,方程组的解是等内容,欢迎下载使用。
这是一份数学北京课改版第五章 二元一次方程组综合与测试当堂达标检测题,共21页。试卷主要包含了若是方程的解,则等于等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试当堂检测题,共21页。