搜索
    上传资料 赚现金
    英语朗读宝

    精品试题京改版七年级数学下册第五章二元一次方程组章节测试试卷(无超纲)

    精品试题京改版七年级数学下册第五章二元一次方程组章节测试试卷(无超纲)第1页
    精品试题京改版七年级数学下册第五章二元一次方程组章节测试试卷(无超纲)第2页
    精品试题京改版七年级数学下册第五章二元一次方程组章节测试试卷(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第五章 二元一次方程组综合与测试一课一练

    展开

    这是一份2021学年第五章 二元一次方程组综合与测试一课一练,共20页。
    京改版七年级数学下册第五章二元一次方程组章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若是关于xy的二元一次方程ax-5y=1的解,则a的值为(   A.-5 B.-1 C.9 D.112、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数xy,已经列出一个方程x﹣1=y+1,则另一个方程应是(  )A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1) D.y=1﹣2x3、若是方程组的解,则的值为(  A.16 B.-1 C.-16 D.14、下列各组数值是二元次方程2xy=5的解是(    A. B. C. D.5、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有(    A.3种 B.4种 C.5种 D.6种6、若关于xy的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为(    A.2 B.1 C. D.07、下列各组数中,是二元一次方程组的解的是(  )A. B. C. D.8、下列方程中,①;②;③;④,是二元一次方程的有(    A.1个 B.2个 C.3个 D.4个9、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是(  )A.1 B.﹣1 C.2 D.﹣210、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?(  )A.2 B.3 C.4 D.5第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、方程组的解为:__________.2、在第四个“中国农民丰收节”来临之际,中国邮政推出了“城市邮票”盲盒,盲盒内含不同丰收场景的邮票,其中ABC三种邮票最受消费者喜爱.故中国邮政准备加印这三种邮票单独售卖.ABC三种邮票分别加印各自原有数量的2倍,3倍,2倍.加印后,这三种邮票原有总数量占加印邮票总数量的,若印制ABC三种邮票的单张费用之比为3:2:15,且加印B邮票的总费用是加印三种邮票总费用的,则A邮票原有数量与三种邮票原有总数量之比为______________.3、如果的和是单项式, 则________ .4、如果是同类项,则xy的值是______.5、购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需(     )元.三、解答题(5小题,每小题10分,共计50分)1、m取哪些整数时,方程组的解是正整数?求出正整数解2、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?3、解方程组:4、分别用代入消元法和加减消元法解方程组并说明两种方法的共同点.5、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱;(2)现计划租用两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少? ---------参考答案-----------一、单选题1、D【分析】代入ax-5y=1解方程即可求解.【详解】解:∵是关于xy的二元一次方程ax-5y=1的解,∴将代入ax-5y=1,得:,解得:故选:D.【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.2、B【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.3、C【分析】xy的值代入方程组,求出a+ba-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得两式相加得两式相差得:故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4、D【分析】将选项中的解分别代入方程2xy=5,使方程成立的即为所求.【详解】解:A. 把代入方程2xy=5,-4-1=-5≠5,不满足题意;B. 把代入方程2xy=5,0-5=-5≠5,不满足题意;C. 把代入方程2xy=5,2-3=-1≠5,不满足题意;D. 把代入方程2xy=5,6-1=5,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.5、A【分析】设购买50元和25元的两种换气扇的数量分别为xy,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为xy由题意得:,即xy都是正整数,∴当x=1时,y=6,x=2时,y=4,当x=3时,y=2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.6、D【分析】解方程组,用a表示xy,把xy代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,x+2y=﹣1a+3+2(-2a-2)=-1,a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示xy,把xy代入x+2y=﹣1中得到关于a的方程是解题的关键.7、B【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:③,④,③+④得,解得代入②得,解得所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.8、A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程,此项正确;化简后为,不符合定义,此项错误;含有三个未知数不符合定义,此项错误;不符合定义,此项错误;所以只有①是二元一次方程,故选:A.【点睛】本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.9、C【分析】先求出的解,然后代入kx+y=7求解即可.【详解】解:联立②-①,得-3y=3,y=-1,y=-1代入①,得x-1=3x=4,代入kx+y=7得:4k﹣1=7,k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.10、B【分析】设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于xy的二元一次方程,结合xy均为正整数,即可得出购买方案的个数.【详解】解:设可以购进笔记本x本,中性笔y支,依题意得:xy均为正整数,∴共有3种购买方案,故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.二、填空题1、【解析】【分析】先把原方程组中的两个方程相减,得方程③,再运用加减法解方程组即可.【详解】解:①-②,得2x-2y=2,即x-y=1③.③×2009,得2009x-2009y=2009④①-④,得x=-1.x=-1代入③得y=-2.∴原方程组的解是故答案为【点睛】本题主要考查了二元一次方程组的求解,灵活运用加减法解方程组是求方程组解的关键.2、##7:12【解析】【分析】ABC三种邮票的原有数量分别为abc,则ABC三种邮票的现有数量分别为2a,3b,2c,依题意列出方程组,求解即可.【详解】解:设ABC三种邮票的原有数量分别为abc,则ABC三种邮票的现有数量分别为2a,3b,2c由题意得:由②得:,即③;把③代入①得:整理得:,即代入③得:A邮票原有数量与三种邮票原有总数量之比为A邮票原有数量与三种邮票原有总数量之比为故答案为:【点睛】本题主要考查了列三元一次方程组的应用,列代数式,求代数式的值,关键是正确设元,并列出方程组.3、5【解析】【分析】两个单项式,所含的字母相同,相同字母的指数也相同,则称这两个单项式是同类项,据此转化为解二元一次方程组,解得,再将其代入多项式中计算即可.【详解】解:∵的和是单项式,是同类项,解得:4、-1【解析】【分析】根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可.【详解】解:∵是同类项,故答案为:-1.【点睛】本题主要考查了同类项的定义和代数式求值,解题的关键在于能够熟练掌握同类项的定义.5、5【解析】【分析】假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元,购买铅笔11支、作业本5本圆珠笔2支共需a元,由题意列出方程组,解方程组求出a的值,即为所求结果.【详解】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:得:,④得:,⑤得:解得:故答案为:5【点睛】本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.三、解答题1、当m=-3时,;当m=-2时,;当m=0时,【分析】由第二个方程得到x=2y,然后利用代入消元法求出y,再根据方程组的解是正整数求出m的值,进而求出方程的解即可.【详解】解:
    由②得,x=2y③,
    ③代入①得,4y+my=4,
    ∴y=
    ∵方程组的解是正整数,
    ∴4+m=1或4+m=2或4+m=4,
    解得m=-3或m=-2或m=0,m=-3时,m=-2时,m=0时,【点睛】本题考查了二元一次方程组的解,用m表示出y,再根据题意确定一个方程的正整数解是解题的关键.2、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x元、y元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m副军棋,则购买副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x元、y元,由题意得:解得∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m副军棋,则购买副跳棋,由题意得:,即解得∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.3、【分析】方程组利用加减消元法求出解即可.【详解】解:①×2﹣②得:9y=12,解得:yy代入②得:6x+4=8,解得:x则方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、,两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.【分析】根据题意分别直接利用代入消元法与加减消元法求出方程组的解即可.【详解】解:代入消元法:
    由①得:y=7-x③,
    把③代入②得:5x+21-3x=31,
    解得:x=5,
    x=5代入③得:y=2,
    则方程组的解为
    加减消元法:
    ①×5-②得:2y=4,
    解得:y=2,
    y=2代入①得:x=5,
    则方程组的解为
    两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.【点睛】本题考查解二元一次方程组,主要利用了消元的思想,注意掌握消元的方法有代入消元法与加减消元法.5、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于xy的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论.【详解】解:(1)设食品有箱,矿泉水有箱,依题意,得解得答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3≤m≤5,又∵m为正整数,m可以为3,4,5,∴共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元).∵4950<5100<5250,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费. 

    相关试卷

    北京课改版七年级下册第五章 二元一次方程组综合与测试练习题:

    这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了在一次爱心捐助活动中,八年级,下列方程是二元一次方程的是等内容,欢迎下载使用。

    数学七年级下册第五章 二元一次方程组综合与测试课后作业题:

    这是一份数学七年级下册第五章 二元一次方程组综合与测试课后作业题,共18页。试卷主要包含了用代入消元法解关于,如果与是同类项,那么的值是,方程组的解是等内容,欢迎下载使用。

    2020-2021学年第五章 二元一次方程组综合与测试同步达标检测题:

    这是一份2020-2021学年第五章 二元一次方程组综合与测试同步达标检测题,共20页。试卷主要包含了下列各式中是二元一次方程的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map