初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时作业
展开京改版七年级数学下册第五章二元一次方程组综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是( )
A.1 B.﹣1 C.2 D.﹣2
2、下列方程组中,属于二元一次方程组的是( )
A. B. C. D.
3、《九章算术》中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格.小明用二元一次方程组解此问题,若已经列出一个方程,则符合题意的另一个方程是( )
A. B. C. D.
4、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )
A. B. C. D.
5、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).
A.11支 B.9支 C.7支 D.5支
6、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为( )
A.6 B.8 C.10 D.12
7、下列各方程中,是二元一次方程的是( )
A.=y+5x B.3x+2y=2x+2y C.x=y2+1 D.
8、下列各组数值是二元次方程2x﹣y=5的解是( )
A. B. C. D.
9、已知方程组中,x、y的值相等,则m等于( ).
A.1或-1 B.1 C.5 D.-5
10、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )
A.﹣ B. C. D.﹣
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若与是同类项,则x= ________,y= ________.
2、已知二元一次方程组,则x+y=______.
3、有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,如果放牧16头牛,则__________天可以吃完牧草.
4、如果与是同类项,则x-y的值是______.
5、已知方程是二元一次方程,则m=__,n=__.
三、解答题(5小题,每小题10分,共计50分)
1、若方程组是二元一次方程组,求a的值.
2、为了响应“阳光运动一小时”校园体育活动,我校计划再购买一批篮球,已知购买2个品牌的篮球和3个品牌的篮球共需380元;购买4个品牌的篮球和2个品牌的篮球共需360元.
(1)求、两种品牌的篮球的单价.
(2)我校打算网购20个品牌的篮球和3个品牌的篮球,“双十一”期间,京东购物打折促销,其中品牌打八折,品牌打九折,问:学校购买打折后的篮球所花的费用比打折前节省了多少钱?
3、表一
x | 3 | a | 9 |
y | 0 | 2 | b |
表二
x | 9 | 1 | c |
y | 4 | 36 | 12 |
(1)关于x,y二元一次方程2x﹣3y=6和mx+ny=40的三组解分别如表一、表二所示,则:a= ;b= ;c= .
(2)关于x,y二元一次方程组的解是 .
4、解方程组:
(1) (2)
5、已知关于x,y的二元一次方程组.
(1)当方程组的解为时,求a的值.
(2)当a=﹣2时,求方程组的解.
(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.
---------参考答案-----------
一、单选题
1、C
【分析】
先求出的解,然后代入kx+y=7求解即可.
【详解】
解:联立,
②-①,得
-3y=3,
∴y=-1,
把y=-1代入①,得
x-1=3
∴x=4,
∴,
代入kx+y=7得:4k﹣1=7,
∴k=2,
故选:C.
【点睛】
本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.
2、C
【分析】
根据二元一次方程组的定义求解即可.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.
【详解】
解:A、中有3个未知数,不是二元一次方程组,不符合题意;
B、未知数x的次数是2,不是二元一次方程组,不符合题意;
C、由两个一次方程组成,并含有两个未知数,故是二元一次方程组,符合题意;
D、中xy的次数是2,不是二元一次方程组,不符合题意.
故选:C.
【点睛】
此题考查了二元一次方程组的定义,解题的关键是熟练掌握二元一次方程组的定义.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.
3、B
【分析】
根据题意,可知设每人出x文,总共y文,再列另一个方程即可.
【详解】
∵,
∴设每人出x文,总共y文,
∴另一个方程为,
故选B.
【点睛】
本题考查了二元一次方程组,正确设未知数,灵活列方程是解题的关键.
4、A
【分析】
观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.
【详解】
解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,
故选:A.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.
5、D
【分析】
根据题意列出三元一次方程组消元,再求解即可.
【详解】
解:设购买甲、乙、丙三种钢笔分别为x、y、z支,由题意,得
①×4-②×5得,
所以,
将代入①,得.
即.
∵,
∴,
∴x为小于6的正整数,
四个选项中只有D符合题意;
故选D.
【点睛】
本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.
6、D
【分析】
设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.
【详解】
解:设甲组人数为人,乙组人数为人,
由题意得:,
将①代入②得:,
解得,
即原来乙组的人数为12人,
故选:D.
【点睛】
本题考查了二元一次方程组的应用,正确建立方程组是解题关键.
7、D
【分析】
根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.
【详解】
解:A、不是整式方程;故错误.
B、3x+2y=2x+2y移项,合并同类项,得x=0,只有一个未知数;故错误.
C、未知数y最高次数是2;故错误.
D、是二元一次方程,故正确.
故选:D.
【点睛】
本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.
8、D
【分析】
将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.
【详解】
解:A. 把代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;
B. 把代入方程2x﹣y=5,0-5=-5≠5,不满足题意;
C. 把代入方程2x﹣y=5,2-3=-1≠5,不满足题意;
D. 把代入方程2x﹣y=5,6-1=5,满足题意;
故选:D.
【点睛】
本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.
9、B
【分析】
根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可.
【详解】
解:解方程组,
得:,
∵x、y的值相等,
∴,
解得.
故选:B.
【点睛】
本题考查了解二元一次方程组,根据x、y的值相等利用第二个方程求出x的值是解题的关键.
10、B
【分析】
解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.
【详解】
解:,
①+②得:2x=14k,即x=7k,
将x=7k代入①得:7k+y=5k,即y=﹣2k,
将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,
解得:k=.
故选:B.
【点睛】
此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.
二、填空题
1、 2 -1
【解析】
【分析】
根据同类项的概念建立关于x,y的方程组,解方程组即可得出答案.
【详解】
∵与是同类项,
解得
故答案为:2,-1.
【点睛】
本题主要考查同类项,掌握同类项的概念及解二元一次方程组的方法是关键.
2、3
【解析】
【分析】
用加减消元法解二元一次方程组即可.
【详解】
解:∵,
①+②,得4x+4y=12,
∴x+y=3,
故答案为:3.
【点睛】
本题考查二元一次方程组的解,熟练掌握加减消元法解二元一次方程组是解题的关键.
3、18
【解析】
【分析】
设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,根据牧草原有牧草数不变,可得出关于x,y,m的方程组,解方程组即可.
【详解】
解:设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,
依题意,得:,
由①可得出:y=12x③,
将③代入②中,得:16mx﹣12mx=24×6x﹣6×12x,
解得:m=18.
故答案为:18.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
4、-1
【解析】
【分析】
根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可.
【详解】
解:∵与是同类项,
∴,
∴,
∴,
故答案为:-1.
【点睛】
本题主要考查了同类项的定义和代数式求值,解题的关键在于能够熟练掌握同类项的定义.
5、 -2 ##0.25
【解析】
【分析】
根据二元一次方程的定义得到:,.据此可以求得、的值.
【详解】
解:方程是二元一次方程,
,,
解得,.
故答案是:;.
【点睛】
本题考查了二元一次方程的定义.解题的关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
三、解答题
1、a=﹣3
【分析】
根据了二元一次方程组的定义,可得 且a﹣3≠0,解出即可
【详解】
解:∵方程组是二元一次方程组,
∴ 且a﹣3≠0,
∴a=﹣3.
【点睛】
本题主要考查了二元一次方程组的定义,熟练掌握含有两个未知数,且未知数的次数都是1的整式方程是二元一次方程,而由两个二元一次方程组成的方程组就是二元一次方程组是解题的关键.
2、(1)A品牌的篮球的单价为40元/个,B品牌的篮球的单价为100元/个;(2)学校购买打折后的篮球所花的费用比打折前节省了190元.
【分析】
(1)设A品牌的篮球的单价为x元/个,B品牌的篮球的单价为y元/个,根据“购买2个A品牌的篮球和3个B品牌的篮球共需380元;购买4个A品牌的篮球和2个B品牌的篮球共需360元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量,列式计算,即可求出结论.
【详解】
解:(1)设A品牌的篮球的单价为x元/个,B品牌的篮球的单价为y元/个,
根据题意得:,
解得:.
答:A品牌的篮球的单价为40元/个,B品牌的篮球的单价为100元/个;
(2)20×40×(1-0.8)+3×100×(1-0.9)=190(元).
答:学校购买打折后的篮球所花的费用比打折前节省了190元.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据总价=单价×数量,列式计算.
3、(1)6;4;7;(2)
【分析】
(1)将x=a,y=2,x=9,y=b分别代入2x﹣3y=6,可求a、b的值;将x=9,y=4,x=1,y=36代入mx+ny=40,得到方程组,求出方程为4x+y=40,再将将x=c,y=12代入4x+y=40,即可求c的值;
(2)用加减消元法求解二元一次方程组即可.
【详解】
解:(1)将x=a,y=2代入2x﹣3y=6,
∴2a﹣6=6,
∴a=6,
将x=9,y=b代入2x﹣3y=6,
∴18﹣3b=6,
∴b=4,
将x=9,y=4,x=1,y=36代入mx+ny=40,
∴,
①×9,得81m+36n=360③,
③﹣②,得80m=320,
∴m=4,
将m=4代入①得,n=1,
∴4x+y=40,
将x=c,y=12代入4x+y=40,
∴4c+12=40,
∴c=7,
故答案为:6,4,7;
(2)由(1)可得,
①×3,得12x+3y=120③,
②+③,得14x=126,
解得x=9,
将x=9代入①,得y=4,
∴方程组的解为,
故答案为:.
【点睛】
本题考查了同解方程组,加减消元法解二元一次方程组,掌握二元一次方程组解的定义以及解法是解题的关键.
4、(1) ;(2)
【分析】
(1)把①代入②,得到 ,再把 代入①,得到 ,即可求解;
(2)由②×3+①,得到 ,再把代入②,得到 ,即可求解.
【详解】
解:(1)
把①代入②,得: ,
解得: ,
把 代入①,得: ,
解得: ,
所以原方程组的解为 ;
(2)
由②×3+①,得: ,
解得: ,
把代入②,得: ,
解得: ,
所以原方程组的解为.
【点睛】
本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法——加减消元法和代入消元法是解题的关键.
5、(1)3;(2);(3)小冉提出的解法不对,理由见解析
【分析】
(1)把代入中即可得解;
(2)当a=﹣2时,方程组变为,计算即可;
(3)根据判断得出不是方程组的解,计算即可;
【详解】
(1)将代入中得:;
(2)当a=﹣2时,方程组为,
得:,解得:,
∴,
∴方程组的解为;
(3)小冉提出的解法不对,
∵不是方程的解,
∴不是该方程组的解,则不一定是方程x+2y=a的解,因此不能代入求解;
【点睛】
本题主要考查二元一次方程组的解得应用,准确分析计算是解题的关键.
北京课改版七年级下册第五章 二元一次方程组综合与测试课堂检测: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课堂检测,共19页。试卷主要包含了下列方程是二元一次方程的是等内容,欢迎下载使用。
数学七年级下册第五章 二元一次方程组综合与测试同步练习题: 这是一份数学七年级下册第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了若方程组的解为,则方程组的解为,已知关于x等内容,欢迎下载使用。
北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题,共22页。试卷主要包含了如果x等内容,欢迎下载使用。