初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时训练
展开京改版七年级数学下册第五章二元一次方程组专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、己知是关于,的二元一次方程的解,则的值是( )
A.3 B. C.2 D.
2、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )
A. B. C. D.
3、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8
4、《九章算术》中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格.小明用二元一次方程组解此问题,若已经列出一个方程,则符合题意的另一个方程是( )
A. B. C. D.
5、下列方程组中,不是二元一次方程组的是( ).
A. B. C. D.
6、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
7、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x,一位数是y,则可列方程组为( )
A. B.
C. D.
8、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )
A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想
9、若是关于x、y的二元一次方程ax-5y=1的解,则a的值为( )
A.-5 B.-1 C.9 D.11
10、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为( )
A.6 B.8 C.10 D.12
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、幻方是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法.三阶幻方是最简单的幻方,又叫九宫格.如图1是由 1,2,3,4,5,6,7,8,9 九个数字组成的一个基本幻方,其对角线、横行、竖列的和都为15.如图2也是一个三阶幻方,中心格是 673;其他八个格中分别是:a,b,知,识,就,是,力,量(这里的字母a,b代表已知数).则“就”代表的数是___(用含a,b的式子表示).
2、已知方程组的解也是方程的解,则______,______.
3、在一个的方格中填写个数,使得每行、每列、每条对角线上的三个数之和相等,得到一个的方格称为一个三阶幻方,如图1,在图2方格中填写上一些数,使它构成一个三阶幻方,则的值为______.
4、已知,则________.
5、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.
三、解答题(5小题,每小题10分,共计50分)
1、m取哪些整数时,方程组的解是正整数?求出正整数解
2、分别用代入消元法和加减消元法解方程组并说明两种方法的共同点.
3、解方程组
4、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪.已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元.
(1)求紫外线消毒灯和体温检测仪的单价各为多少元;
(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案?
5、解方程组:
(1);
(2).
---------参考答案-----------
一、单选题
1、A
【分析】
将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.
【详解】
解:将代入关于x,y的二元一次方程2x-y=27得:
2×3k-(-3k)=27.
∴k=3.
故选:A.
【点睛】
本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.
2、A
【分析】
把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.
【详解】
解:把x=1代入方程组,可得,解得y=2,
将y=2代入1+my=0中,得m=,
故选:A.
【点睛】
此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.
3、A
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
4、B
【分析】
根据题意,可知设每人出x文,总共y文,再列另一个方程即可.
【详解】
∵,
∴设每人出x文,总共y文,
∴另一个方程为,
故选B.
【点睛】
本题考查了二元一次方程组,正确设未知数,灵活列方程是解题的关键.
5、B
【分析】
依据二元一次方程组的定义求解即可.
【详解】
利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;
方程组中,可以整理为所以C也符合;
B中含有三个未知数不符合二元一次方程组的定义.
故答案选B
【点睛】
本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.
6、A
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
7、D
【分析】
若设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.
【详解】
解:设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,依题意得:
,
故选D.
【点睛】
此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.
8、A
【分析】
通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.
【详解】
解:在解二元一次方程组时,
将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,
从而将二元一次方程降次转化为一元一次方程求解,
这种解法体现的数学思想是:转化思想,
故选:A.
【点睛】
本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.
9、D
【分析】
把代入ax-5y=1解方程即可求解.
【详解】
解:∵是关于x、y的二元一次方程ax-5y=1的解,
∴将代入ax-5y=1,
得:,解得:.
故选:D.
【点睛】
此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.
10、D
【分析】
设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.
【详解】
解:设甲组人数为人,乙组人数为人,
由题意得:,
将①代入②得:,
解得,
即原来乙组的人数为12人,
故选:D.
【点睛】
本题考查了二元一次方程组的应用,正确建立方程组是解题关键.
二、填空题
1、2a+b-1346
【解析】
【分析】
由幻方的含义可得:第二个幻方的横行,竖行,对角线的三数之和为2019,从而可得:量=1346-a,知=2019-a-b;再利用知+就+量=2019,代入计算即可得到答案.
【详解】
解:依题意,可得:量+a=2×673;
∴量=1346-a
a+b+知=3×673;
∴知=2019-a-b;
而知+就+量=3×673
∴(2019-a-b)+就+(1346-a)=2019;
∴就=2a+b-1346
故答案为:2a+b-1346
【点睛】
本题考查的是列代数式,三元一次方程组的解法,正确理解题意列出相应的方程再解方程是解题的关键.
2、 3 1
【解析】
【分析】
联立不含a与b的方程组成方程组求出x与y的值,代入剩下的方程求出a与b的值即可.
【详解】
解:联立得:,
解得:,
代入剩下的两方程得:
,
解得:,
故答案为:3,1.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
3、13
【解析】
【分析】
设每行、每列、每条对角线上的三个数之和为m,根据题意列出方程(组),解之即可得出答案.
【详解】
解:设每行、每列、每条对角线上的三个数之和为m,
则方格中其他数为:
-3 | x | m-x+3 |
m-1 | 1 | x-y-3 |
4 | m-y-4 | y |
∵,
解得:,
故答案为:13.
【点睛】
本题综合考查了二元一次方程(组)的应用,解决本题的关键是设出未知数,利用每行、每列、每条对角线上的三个数之和相等列出方程,建立方程(组)求解是解题关键.
4、15:7:6;
【解析】
【分析】
由三元一次方程组,将用关于的代数式表示出来,再求比值即可.
【详解】
解:原方程组化为
②-①得,.故.
∴.
故答案为:
【点睛】
本题考查三元一次方程组的解法,牢记解法步骤并能够灵活应用是解题的重点.
5、
【解析】
【分析】
由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.
【详解】
解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.
三、解答题
1、当m=-3时,;当m=-2时,;当m=0时,.
【分析】
由第二个方程得到x=2y,然后利用代入消元法求出y,再根据方程组的解是正整数求出m的值,进而求出方程的解即可.
【详解】
解:,
由②得,x=2y③,
③代入①得,4y+my=4,
∴y=,
∵方程组的解是正整数,
∴4+m=1或4+m=2或4+m=4,
解得m=-3或m=-2或m=0,
当m=-3时,;
当m=-2时,;
当m=0时,.
【点睛】
本题考查了二元一次方程组的解,用m表示出y,再根据题意确定一个方程的正整数解是解题的关键.
2、,两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.
【分析】
根据题意分别直接利用代入消元法与加减消元法求出方程组的解即可.
【详解】
解:代入消元法:,
由①得:y=7-x③,
把③代入②得:5x+21-3x=31,
解得:x=5,
把x=5代入③得:y=2,
则方程组的解为;
加减消元法:,
①×5-②得:2y=4,
解得:y=2,
把y=2代入①得:x=5,
则方程组的解为,
两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.
【点睛】
本题考查解二元一次方程组,主要利用了消元的思想,注意掌握消元的方法有代入消元法与加减消元法.
3、.
【分析】
将①×10,②×6,进而根据加减消元法解二元一次方程组即可
【详解】
解:①×10,②×6,得
③×3-④,得11y=33,解得y=3.
将y=3代入③,解得x=4.
所以原方程组的解为
【点睛】
本题考查了解二元一次方程,先将方程组中未知数的系数化为整数是解题的关键.
4、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案.
【分析】
(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于、的二元一次方程组,解方程组即可得出结论;
(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可得出关于的一元一次不等式组,解不等式组即可得出结论.
【详解】
解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,
则由题意得,
解得.
答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;
(2)设购买紫外线消毒灯台,则购买体温检测仪个.
,
解得:,
∵为正整数,
∴该校有5种购买方案.
【点睛】
本题考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于、的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键.
5、(1);(2)
【分析】
(1)利用代入消元法解二元一次方程组即可;
(2)先整理原方程得然后把和当做一个整体利用加减消元法求出,,然后利用加减消元法求解即可.
【详解】
解:(1),
把②代入①中得:,解得,
把代入②中得,,
∴方程组的解集为;
(2)
整理得:,
用①-②得:,解得,
把③代入①得:,解得,
用③+④得:,解得,
把代入③得,
∴方程组的解为.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.
北京课改版七年级下册第五章 二元一次方程组综合与测试练习题: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共18页。试卷主要包含了小明在解关于x,解方程组的最好方法是,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题,共19页。试卷主要包含了小明在解关于x,已知方程组中,x等内容,欢迎下载使用。
初中数学第五章 二元一次方程组综合与测试课时作业: 这是一份初中数学第五章 二元一次方程组综合与测试课时作业,共18页。试卷主要包含了方程组的解是,有铅笔,若方程组的解为,则方程组的解为等内容,欢迎下载使用。