搜索
    上传资料 赚现金
    英语朗读宝

    考点解析:京改版七年级数学下册第五章二元一次方程组章节练习试题(无超纲)

    考点解析:京改版七年级数学下册第五章二元一次方程组章节练习试题(无超纲)第1页
    考点解析:京改版七年级数学下册第五章二元一次方程组章节练习试题(无超纲)第2页
    考点解析:京改版七年级数学下册第五章二元一次方程组章节练习试题(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版第五章 二元一次方程组综合与测试同步练习题

    展开

    这是一份北京课改版第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了已知二元一次方程组则,如图,9个大小等内容,欢迎下载使用。
    京改版七年级数学下册第五章二元一次方程组章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、己知是关于的二元一次方程的解,则的值是(    A.3 B. C.2 D.2、已知关于xy的二元一次方程组的解是,则a+b的值是(  )A.1 B.2 C.﹣1 D.03、已知代数式,当时,其值为4;当时,其值为8;当x=2时,其值为25;则当时,其值为( ).A.4 B.8 C.62 D.524、在某场CBA比赛中,某位运动员的技术统计如下表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)防攻(次)个人总得分(分)数据38271163433注:①表中出手投篮次数和投中次数均不包括罚球;②总得分=两分球得分+三分球得分+罚球得分.根据以上信息,本场比赛中该运动员投中两分球和三分球各(  )个.A.5,6 B.6,5 C.4,7 D.7,45、已知二元一次方程组    A.6 B.4 C.3 D.26、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?(    A.1个 B.2个 C.3个 D.4个7、一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x海里/时,水流速度为y海里/时,则下列方程组中正确的是(   ).A. B.C. D.8、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x,一位数是y,则可列方程组为(    A. B.C. D.9、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为(   
     A. B.C. D.10、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买(    ).A.11支 B.9支 C.7支 D.5支第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 ___名员工.2、方程组的解是:________.3、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”则甲、乙现在的年龄分别是______.4、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.5、一个两位数的两个数位上的数字之和为7,若将这两个数字都加上2,则得到的数是原数的2倍少3,则这个两位数是___________.三、解答题(5小题,每小题10分,共计50分)1、m取哪些整数时,方程组的解是正整数?求出正整数解2、已知关于xy的二元一次方程组(1)当方程组的解为时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2ya中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.3、若关于x,y的方程组的解相同,求a,b的值;4、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱;(2)现计划租用两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少?5、解方程(组)(1)10+2(x)=7(x﹣2);(2)(3) ---------参考答案-----------一、单选题1、A【分析】代入关于xy的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于xy的二元一次方程2x-y=27得:2×3k-(-3k)=27.k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.2、B【分析】代入即可求出ab的值;【详解】解:将代入得:

    a+b=2;
    故选:B.【点睛】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.3、D【分析】将已知的三组和代数式的值代入代数式中,通过联立三元一次方程组 ,求出的值,然后将代入代数式即可得出答案.【详解】由条件知:解得:时,故选:D.【点睛】本题考查三元一次方程组的解法,解题关键是掌握三元一次方程组的解法.4、B【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于xy的二元一次方程组,解之即可得出结论.【详解】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:解得:答:设本场比赛中该运动员投中两分球6个,三分球5个.故选:B.【点睛】本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.5、D【分析】先把方程的②×5得到③,然后用③-①即可得到答案.【详解】解:把②×5得:③,用③ -①得:故选D.【点睛】本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.6、C【分析】设这对夫妇的年龄的和为x,子女现在的年龄和为y,这对夫妇共有z个子女;根据本题中的三个等量关系为:此夫妇现在的年龄和=6×其子女现在的年龄和;此夫妇两年前的年龄和=10×其子女两年前的年龄和;此夫妇6年后的年龄和=3×其子女6年后的年龄和.可列出方程组,解方程组即可.【详解】设现在这对夫妇的年龄和为x岁,子女现在的年龄和为y岁,这对夫妇共有z个子女,则,解得这对夫妇共有3个子女.故选C.【点睛】本题考查了三元一次方程组的应用,根据题意列出方程组并解方程组是解题的关键.7、D【分析】根据等量关系“顺水时间×顺水速度=90、逆水时间×逆水速度=90”以及顺水、逆水速度与静水速度、水流速度的关系即可解答.【详解】解:根据题意可得,顺水速度=x+y,逆水速度=x-y,化简得故选:D.【点睛】考查主要考查了用二元一次方程组解决行程问题,掌握顺水路程及逆水路程的等量关系以及顺水速度=静水速度+水流速度、逆水速度=静水速度一水流速度是解答本题的关键.8、D【分析】若设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.【详解】解:设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,依题意得:故选D.【点睛】此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.9、A【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x,宽为y由题意得:故选A.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.10、D【分析】根据题意列出三元一次方程组消元,再求解即可.【详解】解:设购买甲、乙、丙三种钢笔分别为xyz支,由题意,得①×4-②×5得所以代入①,得x为小于6的正整数,四个选项中只有D符合题意;故选D【点睛】本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.二、填空题1、568【解析】【分析】设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意列出方程,由整数解的思想可求解.【详解】解:设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意可得:解得:x∵1≤a≤10,且a为整数,b=4,∴总人数=4×48+4×24+40×7=568(人),故答案为:568.【点睛】本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键.2、【解析】【分析】利用加减消元法解题.【详解】解: ①+②×3得:代入②得,故答案为:【点睛】本题考查加减法解二元一次方程组,是重要考点,掌握相关知识是解题关键.3、42岁,23岁【解析】【分析】设甲现在x岁,乙现在y岁,根据甲、乙年龄之间的关系,可得出关于xy的二元一次方程组,解之即可得出结论.【详解】解:设甲现在x岁,乙现在y岁,依题意,得:解得:答:甲现在42岁,乙现在23岁.故答案为:42岁,23岁.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4、【解析】【分析】由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得故答案为:【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.5、25【解析】【分析】设十位上的数字为,个位上的数字为,根据题意列出二元一次方程组,解方程组即可求得这个两位数.【详解】设十位上的数字为,个位上的数字为,根据题意得。解得故这个两位数为故答案为:【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.三、解答题1、当m=-3时,;当m=-2时,;当m=0时,【分析】由第二个方程得到x=2y,然后利用代入消元法求出y,再根据方程组的解是正整数求出m的值,进而求出方程的解即可.【详解】解:
    由②得,x=2y③,
    ③代入①得,4y+my=4,
    ∴y=
    ∵方程组的解是正整数,
    ∴4+m=1或4+m=2或4+m=4,
    解得m=-3或m=-2或m=0,m=-3时,m=-2时,m=0时,【点睛】本题考查了二元一次方程组的解,用m表示出y,再根据题意确定一个方程的正整数解是解题的关键.2、(1)3;(2);(3)小冉提出的解法不对,理由见解析【分析】(1)把代入中即可得解;(2)当a=﹣2时,方程组变为,计算即可;(3)根据判断得出不是方程组的解,计算即可;【详解】(1)将代入中得:(2)当a=﹣2时,方程组为得:,解得:∴方程组的解为(3)小冉提出的解法不对,不是方程的解,不是该方程组的解,则不一定是方程x+2ya的解,因此不能代入求解;【点睛】本题主要考查二元一次方程组的解得应用,准确分析计算是解题的关键.3、【分析】由题意可先解方程组,求出x、y后代入含a、b的两个方程,进一步即可求出结果;【详解】解:解方程组,得代入,得解得【点睛】本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键.4、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于xy的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论.【详解】解:(1)设食品有箱,矿泉水有箱,依题意,得解得答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3≤m≤5,又∵m为正整数,m可以为3,4,5,∴共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元).∵4950<5100<5250,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费.5、(1)x;(2)x=﹣4;(3)【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;(3)利用加减消元法解答即可.【详解】解:(1)10+2(x)=7(x﹣2),去括号、得10+2x﹣1=7x﹣14,移项、得2x﹣7x=1﹣10﹣14,合并同类项、得﹣5x=﹣23,系数化为1,得x(2)整理、得去分母、得17+20x﹣15x=﹣3,移项、得20x﹣15x=﹣3﹣17,合并同类项、得5x=﹣20,系数化为1,得x=﹣4;(3)方程组整理,得①+②,得6y=6,解得y=1,y=1代入②,得x﹣2=1,解得x=3,故方程组的解为【点睛】此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤. 

    相关试卷

    初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时作业:

    这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时作业,共21页。试卷主要包含了二元一次方程组的解是等内容,欢迎下载使用。

    北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题:

    这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题,共17页。试卷主要包含了已知,则等内容,欢迎下载使用。

    北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题:

    这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题,共19页。试卷主要包含了下列方程中,①x+y=6;②x,下列方程是二元一次方程的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map