搜索
    上传资料 赚现金
    英语朗读宝

    考点解析:京改版七年级数学下册第五章二元一次方程组定向攻克试卷

    考点解析:京改版七年级数学下册第五章二元一次方程组定向攻克试卷第1页
    考点解析:京改版七年级数学下册第五章二元一次方程组定向攻克试卷第2页
    考点解析:京改版七年级数学下册第五章二元一次方程组定向攻克试卷第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第五章 二元一次方程组综合与测试复习练习题

    展开

    这是一份初中数学第五章 二元一次方程组综合与测试复习练习题,共20页。试卷主要包含了若方程组的解为,则方程组的解为,二元一次方程组的解是等内容,欢迎下载使用。
    京改版七年级数学下册第五章二元一次方程组定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若是方程组的解,则的值为(  A.16 B.-1 C.-16 D.12、下列方程组中,不是二元一次方程组的是(    ).A. B. C. D.3、如果xy=3:2,并且x+3y=27,则xy中较小的值是(   ).A.3 B.6 C.9 D.124、如果的解都是正数,那么a 的取值范围是( ).A.a<2; B. C. D. 5、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数xy,已经列出一个方程x﹣1=y+1,则另一个方程应是(  )A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1) D.y=1﹣2x6、若方程组的解为,则方程组的解为(  )A. B.C. D.7、为迎接2022年北京冬奧会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有(    A.2种 B.3种 C.4种 D.5种8、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去从而求解,这种解法体现的数学思想是(    A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想9、二元一次方程组的解是(  )A. B. C. D.10、下列方程组中,属于二元一次方程组的是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若的和是单项式,则m=_______,n=_______.2、已知方程组有相同的解,则ab=_____.3、关于x的方程的解相同,则k的值为____.4、网络时代的到来,让网购成为人们生活中随处可见的操作,快递员也成为一项方便人们生活重要的职业,ABC三位快递员在三个不同的快递公司进行派件工作,且每件快递派送费用有一定差别,B快递员的每件快递派送费是A的2倍,且A快递员每件快递派送费为整数.平时每位快递员的每天派送件数基本保持稳定,B快递员每天派送的数量是C的1.5倍,C快递员每天派送的数量为200件,三位快递员平时一天的总收入为800元.由于本周处于双12购物节期间,大量快选带留,三位派送员加班加点进行派送,每件快递派送费不发生变化,每天的派送比平时均有变化,A快递员比平时的1.5倍还多60件,B快递员比平时的2倍多100件,c快递员是平时的3倍,此时每天三位快递员一天总收入增加到1940元则B快递员在双12购物节派送期间每天收入为 _____元.5、如图所示,矩形ABCD被分成一些正方形,已知AB=32cm,则矩形的另一边AD=________cm.三、解答题(5小题,每小题10分,共计50分)1、用代入法解方程组:2、用加减法解方程组:3、解方程组:4、为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨 17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分6.000.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求ab的值;(2)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)5、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱;(2)现计划租用两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少? ---------参考答案-----------一、单选题1、C【分析】xy的值代入方程组,求出a+ba-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得两式相加得两式相差得:故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2、B【分析】依据二元一次方程组的定义求解即可.【详解】利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;方程组中,可以整理为所以C也符合;B中含有三个未知数不符合二元一次方程组的定义.故答案选B【点睛】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.3、B【分析】xy=3:2变形为x=y,联立解方程组即可.【详解】解:把xy=3:2变形为:x=yx=y代入x+3y=27中:y=6.x=9.xy中较小的是6.故选:B.【点睛】本题实质是解二元一次方程组,掌握代入消元法是解题的关键.4、C【分析】先解方程组,求出用含a表示的xy,根据方程组的解为正数,列不等式求解即可.【详解】解:①×2得③+②得代入①得,的解都是正数,解得故选择C.【点睛】本题考查含参数的二元一次方程组,不等式组,熟练掌握二元一次方程组解法,不等式组解法是解题关键.5、B【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.6、B【分析】由整体思想可得,求出xy即可.【详解】解:∵方程组的解为∴方程组的解故选:B.【点睛】本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.7、B【分析】设购买甲种奖品为x件,乙种奖品为y件,由题意可得,进而求解即可.【详解】解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:xy都为正整数,∴当时,则时,则时,则时,则(不合题意舍去);∴购买方案有3种;故选B.【点睛】本题主要考查二元一次方程的应用,正确理解题意、掌握二元一次方程整数解求解的方法是解题的关键.8、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.9、C【分析】根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.【详解】解:由①+②,得11x=33,解得:x=3,x=3代入①,得9+2y=13,解得:y=2,所以方程组的解是故选:C.【点睛】本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.10、C【分析】根据二元一次方程组的定义求解即可.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.【详解】解:A、中有3个未知数,不是二元一次方程组,不符合题意;B、未知数x的次数是2,不是二元一次方程组,不符合题意;C、由两个一次方程组成,并含有两个未知数,故是二元一次方程组,符合题意;D、xy的次数是2,不是二元一次方程组,不符合题意.故选:C.【点睛】此题考查了二元一次方程组的定义,解题的关键是熟练掌握二元一次方程组的定义.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.二、填空题1、     1     ##-0.5【解析】【分析】单项式的和仍是一个单项式,就是说它们是同类项.由同类项的定义(所含字母相同,相同字母的指数相同)可得,解方程即可求得m和n的值.【详解】解:由题意知单项式是同类项,所以有解得故答案为:1;【点睛】此题考查了合并同类项,以及单项式,熟练掌握合并同类项法则是解本题的关键.2、-1【解析】【分析】根据方程组有相同的解,所以把组成方程组求出 xy 的值,再把 xy 的值代入其他两个方程 即可求出ab 的值,即可得答案.【详解】解:∵方程组有相同的解,∴方程组的解也是它们的解,①× 2+②,得:2x+x= 4-7,解得:x=-1,x = -1代入①,得:-1+y=2,解得:y=3,x =-1, y=3代入得:-a+3= 4解得:a= -1,x =-1, y=3代入得:-1+3b=8,解得:b=3,ab=(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.3、2【解析】【分析】由题意根据同解方程解方程的方法联立方程可得,进而即可得出答案.【详解】解:因为的解相同,且所以,可得,解得:.故答案为:2.【点睛】本题考查同解方程解方程,解答本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.4、1400【解析】【分析】A每件快递派送费为x元,A每天派送件数为y件,C每件快递派送费为z元,根据题意列出xyz的方程,进而解方程即可求解.【详解】解:设A每件快递派送费为x元,B每件快递派送费为2x元,C每件快递派送费为y元,A平时每天派送件数为z件,根据题意,B平时每天派送件数为300件,双12购物节期间,A每天派送件数为(1.5z+60)件,B每天派送件数为700件,根据题意,,即:x为整数,∴由x=1,则有:解得:B每件快递派送费为2元,则B快递员在双12购物节派送期间每天收入为2×700=1400元,故答案为:1400.【点睛】本题考查三元一次方程组的应用、解二元一次方程组,理解题意,找准等量关系,正确列出方程组,得出x=1是解答的关键.5、29【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求矩形另一边AD的长即可,仍可用xy表示出来.【详解】解:设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用xy表示出来(如图),根据AB=CD=32cm,可得解得:矩形的另一边AD=x+2y+y+2y=x+5y=29cm.故答案为:29.【点睛】本题考查了整式乘法运算的应用,二元一次方程组的应用,解题的关键是读懂图意根据矩形的性质列出方程组并求解.三、解答题1、【分析】把①变形得③,代入②求出x,然后把x的值代入③再求出y即可;【详解】解:由①得③,将③代入②中,得解得代入③中,得所以原方程组的解是【点睛】本题考查了代入消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个方程为用含一个未知数的代数式表示另一个未知数的形式,若不具备这种特征,则根据等式的性质将其中一个方程变形,使其具备这种形式.2、【分析】先把原方程整理得,然后利用加减消元法求解即可.【详解】解:整理得,解得代入①中得,解得∴原方程组的解是【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.3、【分析】方程组利用加减消元法求出解即可.【详解】解:①×2﹣②得:9y=12,解得:yy代入②得:6x+4=8,解得:x则方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、(1)a=1.8,b=2.8;(2)小王家11月份用水11吨【分析】(1)根据7月份和8月份的水费列出方程组,解方程组即可求得ab(2)设小王家11月份用水y吨,由于两个月一共用水50吨,其中10月份用水超过30吨,则分y≤17和17<y<30,分别列方程求解,再结合问题的实际意义可得本题答案.【详解】解:(1)由题意得:解①,得a=1.8,a=1.8代入②,解得b=2.8,a=1.8,b=2.8.(2)设小王家11月份用水y吨,y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30,解得y=11,当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30,解得y=9.125(舍去),∴小王家11月份用水11吨.【点睛】本题考查了一元一次方程和二元一次方程组在实际问题中的应用,理清题目中的数量关系,并正确分段是解答本题的关键.5、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于xy的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论.【详解】解:(1)设食品有箱,矿泉水有箱,依题意,得解得答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3≤m≤5,又∵m为正整数,m可以为3,4,5,∴共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元).∵4950<5100<5250,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费. 

    相关试卷

    初中数学第五章 二元一次方程组综合与测试测试题:

    这是一份初中数学第五章 二元一次方程组综合与测试测试题,共21页。试卷主要包含了已知方程组中,x,下列各式中是二元一次方程的是等内容,欢迎下载使用。

    数学七年级下册第五章 二元一次方程组综合与测试课后复习题:

    这是一份数学七年级下册第五章 二元一次方程组综合与测试课后复习题,共20页。试卷主要包含了二元一次方程的解可以是等内容,欢迎下载使用。

    数学七年级下册第五章 二元一次方程组综合与测试练习:

    这是一份数学七年级下册第五章 二元一次方程组综合与测试练习,共18页。试卷主要包含了已知是方程的解,则k的值为,下列各式中是二元一次方程的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map