北京课改版七年级下册第五章 二元一次方程组综合与测试课堂检测
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课堂检测,共19页。试卷主要包含了下列方程是二元一次方程的是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若是方程的解,则等于( )
A. B. C. D.
2、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )
A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元
3、用代入法解方程组,以下各式正确的是( )
A. B.
C. D.
4、已知是方程5x−ay=15的一个解,则a的值为( )
A.5 B.−5 C.10 D.−10
5、关于的二元一次方程组的解满足,则k的值是( )
A.2 B. C. D.3
6、下列方程是二元一次方程的是( )
A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=1
7、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )
A.60厘米 B.80厘米 C.100厘米 D.120厘米
8、用加减法将方程组中的未知数x消去后,得到的方程是( ).
A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16
9、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )
A.6或 B.2或6 C.2或 D.2或
10、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )
A.9 B.7 C.5 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知是关于x,y的二元一次方程组的解,则的值为____________.
2、方程,当a≠___时,它是二元一次方程,当a=____时,它是一元一次方程.
3、近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 ___名员工.
4、方程的正整数解是________.
5、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.
三、解答题(5小题,每小题10分,共计50分)
1、代数式,当x=-2时,代数式的值为4;当x=2时,代数式的值为10,则x=-1时,求代数式的值.
2、解下列二元一次方程组:
3、解方程组
(1)
(2)
4、已知方程组的解满足x为非正数,y为负数.
(1)求m的取值范围;
(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.
5、若关于x,y的方程组与的解相同,求a,b的值;
---------参考答案-----------
一、单选题
1、B
【分析】
把代入到方程中得到关于k的方程,解方程即可得到答案.
【详解】
解:∵是方程的解,
∴,
∴,
故选B.
【点睛】
本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.
2、B
【分析】
设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.
【详解】
解:设每件商品标价x元,进价y元则根据题意得:
,
解得:,
答:该商品每件进价155元,标价每件200元.
故选:B.
【点睛】
本题考查了二元一次方程的应用,找出正确等量关系是解题关键.
3、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
4、A
【分析】
把与的值代入方程计算即可求出的值.
【详解】
解:把代入方程,
得,
解得.
故选:.
【点睛】
本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
5、B
【分析】
解方程组,用含的式子表示,然后将方程组的解代入即可.
【详解】
解:,
①-②得:,
∵,
∴,
解得:,
故选:B.
【点睛】
本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.
6、C
【分析】
根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.
【详解】
解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,
∴x﹣xy=1不是二元一次方程;
B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,
∴x2﹣y﹣2x=1不是二元一次方程;
C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,
∴3x﹣y=1是二元一次方程;
D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,
∴﹣2y=1不是二元一次方程.
故选:C.
【点睛】
此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
7、D
【分析】
设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;
【详解】
设小长方形的长为x,小长方形的宽为y,
根据题意可得:,
解得:,
∴每个小长方形的周长是;
故选D.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
8、D
【分析】
根据二元一次方程组的加减消元法可直接进行求解.
【详解】
解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;
故选D.
【点睛】
本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.
9、A
【分析】
设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.
【详解】
解:∵ABCD是长方形,
∴∠A=∠B=90°,
∵点E为AD的中点,AD=8cm,
∴AE=4cm,
设点Q的运动速度为x cm/s,
①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,
,
解得,,
即点Q的运动速度cm/s时能使两三角形全等.
②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,
,
解得:,
即点Q的运动速度6cm/s时能使两三角形全等.
综上所述,点Q的运动速度或6cm/s时能使两三角形全等.
故选:A.
【点睛】
本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.
10、C
【分析】
先求出的解,然后代入可求出a的值.
【详解】
解:,
由①+②,可得2x=4a,
∴x=2a,
将x=2a代入①,得
2a-y=a,
∴y=2a﹣a=a,
∵二元一次方程组的解是二元一次方程的一个解,
∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,
∴a=7,
故选C.
【点睛】
本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
二、填空题
1、0
【解析】
【分析】
结合题意,根据二元一次方程组的性质,将代入到原方程组,得到关于a和b的二元一次方程组,通过求解即可得到a和b,结合代数式的性质计算,即可得到答案.
【详解】
∵是关于x,y的二元一次方程组的解
∴将代入到,得
∴
∴
故答案为:0.
【点睛】
本题考查了二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.
2、 ±1 或1
【解析】
【分析】
根据一元一次方程的定义可得分两种情况讨论,当,即时;当,即时,方程为一元一次方程,即可得的值;根据二元一次方程的定义可得且,解可得的值.
【详解】
解:关于的方程,是二元一次方程,
且,
解得:;
方程,是一元一次方程,分类讨论如下:
当,即时,方程为为一元一次方程;
当,即时,方程为为一元一次方程;
故答案是:±1;或1.
【点睛】
本题主要考查了二元一次方程和一元一次方程的定义,解题的关键是掌握一元一次方程的定义:只含有一个未知数(元,且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.
3、568
【解析】
【分析】
设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意列出方程,由整数解的思想可求解.
【详解】
解:设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,
由题意可得:
,
解得:x=,
∵1≤a≤10,且a为整数,
∴,
∴b=4,
∴总人数=4×48+4×24+40×7=568(人),
故答案为:568.
【点睛】
本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键.
4、
【解析】
【分析】
由,可得出,,又由 均为正整数,分析即可得到正确答案.
【详解】
解:∵,
∴
∴
∴,
同理可得:
又∵ 均为正整数
∴满足条件的解有且只有一组,即
故答案为:
【点睛】
本题考查三元一次方程的变式,牢记相关的知识点并能够灵活应用是解题关键.
5、
【解析】
【分析】
由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.
【详解】
解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.
三、解答题
1、
【分析】
先根据代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,得到,解方程求出,由此求解即可.
【详解】
解:∵代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,
∴
解得,,
∴ 代数式为即为,
当x=-1代入,得.
【点睛】
本题主要考查了代数式求值和解二元一次方程组,解题的关键在于能够根据题意建立关于a、b的二元一次方程组求出a、b的值.
2、
【分析】
先把方程组进行整理,然后利用代入消元法解方程组,即可得到答案.
【详解】
解:,
整理得:,
由①得:③,
把③代入②,得:,
解得:,
把代入③,得,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,解题的关键是熟练掌握代入消元法进行解题.
3、(1);(2)
【分析】
(1)利用加减消元法解二元一次方程组即可;
(2)利用加减消元法解二元一次方程组即可.
【详解】
解:(1)
用① ×2+②得,解得,
把代入①得,解得,
∴方程组的解为:;
(2)
用① ×2+②×3得,解得,
把代入①得,解得,
∴方程组的解为:.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.
4、(1)﹣2<m≤3;(2)﹣1
【分析】
(1)先求出二元一次方程组的解为,然后根据x为非正数,y为负数,即x≤0,y<0,列出不等式求解即可;
(2)先把原不等式移项得到(2m+1)x<2m+1.根据不等式(2m+1)x﹣2m<1的解为x>1,可得2m+1<0,由此结合(1)所求进行求解即可.
【详解】
解:(1)解方程组
用①+②得:,解得③,
把③代入②中得:,解得,
∴方程组的解为:.
∵x为非正数,y为负数,即x≤0,y<0,
∴.
解得﹣2<m≤3;
(2)(2m+1)x﹣2m<1
移项得:(2m+1)x<2m+1.
∵不等式(2m+1)x﹣2m<1的解为x>1,
∴2m+1<0,
解得m.
又∵﹣2<m≤3,
∴m的取值范围是﹣2<m.
又∵m是整数,
∴m的值为﹣1.
【点睛】
本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.
5、
【分析】
由题意可先解方程组,求出x、y后代入含a、b的两个方程,进一步即可求出结果;
【详解】
解:解方程组,得,
代入,得,
解得
【点睛】
本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题,共19页。试卷主要包含了下列各式中是二元一次方程的是,如果与是同类项,那么的值是等内容,欢迎下载使用。
这是一份数学第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了如图,9个大小等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步达标检测题,共21页。试卷主要包含了小明在解关于x,解方程组的最好方法是等内容,欢迎下载使用。