初中北京课改版第五章 二元一次方程组综合与测试课时练习
展开
这是一份初中北京课改版第五章 二元一次方程组综合与测试课时练习,共19页。试卷主要包含了下列方程是二元一次方程的是,方程组的解是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )A.-2 B.-1 C.2 D.12、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.3、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )A.330千米 B.170千米 C.160千米 D.150千米4、下列方程组中是三元一次方程组的是( ).A. B.C. D.5、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组( )A.5组 B.6组 C.7组 D.8组6、下列方程是二元一次方程的是( )A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=17、如果的解都是正数,那么a 的取值范围是( ).A.a<2; B.; C. ; D. 8、方程组的解是( )A. B. C. D.9、由方程组可以得出关于x和y的关系式是( )A. B. C. D.10、解方程组的最好方法是( )A.由①得再代入② B.由②得再代入①C.由①得再代入② D.由②得再代入①第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、幻方是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法.三阶幻方是最简单的幻方,又叫九宫格.如图1是由 1,2,3,4,5,6,7,8,9 九个数字组成的一个基本幻方,其对角线、横行、竖列的和都为15.如图2也是一个三阶幻方,中心格是 673;其他八个格中分别是:a,b,知,识,就,是,力,量(这里的字母a,b代表已知数).则“就”代表的数是___(用含a,b的式子表示).2、已知二元一次方程组,则x+y=______.3、我国南宋数学家杨辉所著《田亩比类乘除捷法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为______________.4、若x、y的值满足,,,则k的值等于________.5、若关于x、y的方程是二元一次方程,则m=_______.三、解答题(5小题,每小题10分,共计50分)1、解方程组或不等式组:(1);(2).2、甲、乙两同学同时解方程组,甲看错了方程①中的m,得到的方程组的解为,乙看错了方程②中的,得到的方程组的解为,求原方程组的正确解.3、解方程组:(1)(2)4、解方程(组)(1)10+2(x﹣)=7(x﹣2);(2);(3).5、某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元? ---------参考答案-----------一、单选题1、C【分析】先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.【详解】解∵x=y,∴原方程组可变形为,解方程①得x=1,将代入②得,解得,故选C.【点睛】本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.2、A【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.3、C【分析】设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.【详解】解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,依题意得: ,解得: , ,故选:C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4、D【分析】三元一次方程组中共含有三个未知数,并且含未知数的项的次数都是1,每个方程都是整式方程,由此进行判断即可.【详解】解:A、a的最高次数是2,选项错误;B、x、y、z的最高次数都是2,选项错误;C、每个方程都是分式方程,选项错误;D、符合题意,选项正确.故选:D【点睛】本题考查三元一次方程组的识别,牢记定义是解题的切入点.5、B【分析】设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,根据题意得方程8x+7y+(12﹣x﹣y)×5=80,于是得到结论.【详解】解:设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,由题意得,8x+7y+(12﹣x﹣y)×5=80,∴3x+2y=20,当x=1时,y=,当x=2时,y=7,当x=4时,y=4,当x=6时,y=1,∴8人组最多可能有6组,故选B.【点睛】本题考查了二元一次方程的应用,正确的理解题意是解题的关键.6、C【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.7、C【分析】先解方程组,求出用含a表示的x、y,根据方程组的解为正数,列不等式求解即可.【详解】解:,①×2得,③+②得,把代入①得,,∵的解都是正数,∴,解得.故选择C.【点睛】本题考查含参数的二元一次方程组,不等式组,熟练掌握二元一次方程组解法,不等式组解法是解题关键.8、C【分析】先用加减消元法解二元一次方程组,再确定选项即可.【详解】解:方程组由①×3+②得10x=5,解得,把代入①中得,所以原方程组的解是.故选择C.【点睛】本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.9、C【分析】分别用x,y表示m,即可得到结果;【详解】由,得到,由,得到,∴,∴;故选C.【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.10、C【分析】观察两方程中系数关系,即可得到最好的解法.【详解】解:解方程组的最好方法是由①得,再代入②.故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题1、2a+b-1346【解析】【分析】由幻方的含义可得:第二个幻方的横行,竖行,对角线的三数之和为2019,从而可得:量=1346-a,知=2019-a-b;再利用知+就+量=2019,代入计算即可得到答案.【详解】解:依题意,可得:量+a=2×673;∴量=1346-aa+b+知=3×673;∴知=2019-a-b;而知+就+量=3×673∴(2019-a-b)+就+(1346-a)=2019;∴就=2a+b-1346故答案为:2a+b-1346【点睛】本题考查的是列代数式,三元一次方程组的解法,正确理解题意列出相应的方程再解方程是解题的关键.2、3【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:∵,①+②,得4x+4y=12,∴x+y=3,故答案为:3.【点睛】本题考查二元一次方程组的解,熟练掌握加减消元法解二元一次方程组是解题的关键.3、x(x+12)=864【解析】【分析】由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12)步,再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.【详解】∵矩形的宽为x步,且宽比长少12步,∴矩形的长为(x+12)步.依题意,得:x(x+12)=864.故答案为:x(x+12)=864.【点睛】本题考查了一元二次方程的实际应用,关键是理解题意,根据等量关系正确列出方程.4、-4【解析】【分析】由题意可联立方程组,由①②可解出、的值,代入③即可得出答案.【详解】由题意可得:,①×3+②得:,解得:,代入①得:,将,,代入③得,,解得.【点睛】本题考查解二元一次方程组,掌握把k看作常数,熟练掌握二元一次方程组的解法是解题的关键.5、1【解析】【分析】根据二元一次方程定义可得:|m|=1,且m-1≠0,进而可得答案.【详解】∵关于x、y的方程是二元一次方程,∴|m|=1,且m-1≠0,解得:m=1,故答案为:1【点睛】本题考查了二元一次方程,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.三、解答题1、(1);(2).【分析】(1)利用代入消元法求解即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1)由②得:③,将③代入①得,解得将代入③得: ∴方程组的解为:;(2)解不等式组由①得:,解得,由②得:,解得,∴不等式组的解集为:.【点睛】本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法.2、【分析】把代入方程组第二个方程求出n的值,把代入第一个方程求出m的值,确定出原方程组,再求解即可.【详解】解:把代②得:-12+n=-5,即n=7;把代入①得:4m-4=12,即m=4,故方程组为,③×3-②×2得:-23y=46,即y=-2,把y=-2代入③得:x=.则方程组的解为.【点睛】本题考查的是二元一次方程的解,解答此题关键是将每一个解代入没有看错的方程中,分别求m、n的值,再解方程组即可.3、(1);(2)【分析】(1)利用把两个方程相加先消去求解 再求解,从而可得方程组的解;(2)把方程①乘以3,再与方程②相加消去 求解 再求解 从而可得答案.【详解】解:(1)①+②得: 解得: 把代入①得: 解得: 所以方程组的解是 (2)①得: ②+③得: 解得: 把代入①得: 所以原方程组是解是【点睛】本题考查的是利用加减消元法解二元一次方程组,掌握“加减法解二元一次方程组”是解本题的关键.4、(1)x=;(2)x=﹣4;(3).【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;(3)利用加减消元法解答即可.【详解】解:(1)10+2(x﹣)=7(x﹣2),去括号、得10+2x﹣1=7x﹣14,移项、得2x﹣7x=1﹣10﹣14,合并同类项、得﹣5x=﹣23,系数化为1,得x=;(2)﹣,整理、得,去分母、得17+20x﹣15x=﹣3,移项、得20x﹣15x=﹣3﹣17,合并同类项、得5x=﹣20,系数化为1,得x=﹣4;(3)方程组整理,得,①+②,得6y=6,解得y=1,把y=1代入②,得x﹣2=1,解得x=3,故方程组的解为.【点睛】此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤.5、(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.【分析】(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;(2)根据(1)所求得结果进行求解即可.【详解】解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,根据题意得:,解得:, 答:A种树苗每棵的价格40元,B种树苗每棵的价格10元; (2)=1140元。答:总费用需1140元.【点睛】本题考查二元一次方程组的应用,正确理解题意列出方程求解是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习,共19页。试卷主要包含了有铅笔,若是关于x,已知是二元一次方程,则的值为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共20页。试卷主要包含了用代入消元法解关于,若是方程的解,则等于,若方程组的解为,则方程组的解为等内容,欢迎下载使用。