初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练
展开
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了已知二元一次方程组则等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程组中,是二元一次方程组的是( )A. B. C. D.2、下列各组数值是二元次方程2x﹣y=5的解是( )A. B. C. D.3、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )A.9 B.7 C.5 D.34、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )A.2 B.1 C. D.05、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).A., B.2,1 C.-2,1 D.-1,06、已知二元一次方程组则( )A.6 B.4 C.3 D.27、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元8、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )A. B. C. D.9、关于x,y的方程是二元一次方程,则m和n的值是( )A. B. C. D.10、已知是二元一次方程的一组解,则m的值是( )A. B.3 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,用含m的代数式表示n,则______.2、在第四个“中国农民丰收节”来临之际,中国邮政推出了“城市邮票”盲盒,盲盒内含不同丰收场景的邮票,其中A,B,C三种邮票最受消费者喜爱.故中国邮政准备加印这三种邮票单独售卖.A,B,C三种邮票分别加印各自原有数量的2倍,3倍,2倍.加印后,这三种邮票原有总数量占加印邮票总数量的,若印制A,B,C三种邮票的单张费用之比为3:2:15,且加印B邮票的总费用是加印三种邮票总费用的,则A邮票原有数量与三种邮票原有总数量之比为______________.3、弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”则哥哥的年龄是___________岁.4、若与是同类项,则x= ________,y= ________.5、若不等式组的解集为.则关于、的方程组的解为_____________.三、解答题(5小题,每小题10分,共计50分)1、计算下列各题: (1) (2)解方程组:.(3)解不等式组:,并把解集在数轴上表示出来.2、如图,已知点A、点B在数轴上表示的数分别是-20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?
3、已知关于x、y的二元一次方程组的解是.求a-b的值.4、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱;(2)现计划租用,两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少?5、请用指定的方法解下列方程组:(1);(代入法)(2).(加减法) ---------参考答案-----------一、单选题1、C【分析】根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的,故本选项错误;B.方程组中含有3个未知数,故本选项错误;C. 符合二元一次方程组的定义,故本选项正确;D. 第二个方程中的xy是二次的,故本选项错误.故选C.【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,判断各选项即可.2、D【分析】将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.【详解】解:A. 把代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;B. 把代入方程2x﹣y=5,0-5=-5≠5,不满足题意;C. 把代入方程2x﹣y=5,2-3=-1≠5,不满足题意;D. 把代入方程2x﹣y=5,6-1=5,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.3、C【分析】先求出的解,然后代入可求出a的值.【详解】解:,由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得2a-y=a,∴y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7,故选C.【点睛】本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.4、D【分析】解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:,①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,∵x+2y=﹣1∴a+3+2(-2a-2)=-1,∴a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.5、A【分析】将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可【详解】将时,代入,得 ①,再由k比b大1得 ②,①②联立,解得,.故选:A.【点睛】此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.6、D【分析】先把方程的②×5得到③,然后用③-①即可得到答案.【详解】解:,把②×5得:③,用③ -①得:,故选D.【点睛】本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.7、B【分析】设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.【详解】解:设每件商品标价x元,进价y元则根据题意得:,解得:,答:该商品每件进价155元,标价每件200元.故选:B.【点睛】本题考查了二元一次方程的应用,找出正确等量关系是解题关键.8、A【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【详解】解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,故选:A.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.9、C【分析】根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.【详解】解:由题意可得:,即①+②得:,解得将代入①得,故故选:C【点睛】此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.10、A【分析】把代入5x+3y=1即可求出m的值.【详解】把代入5x+3y=1,得10+3m=1,∴m=-3,故选A.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.二、填空题1、【解析】【分析】先移项,然后将的系数化为1,即可求解.【详解】解:故答案为:【点睛】此题考查了解二元一次方程,解题的关键是将其中一个数看做已知数,另一个数看做未知数.2、##7:12【解析】【分析】设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,依题意列出方程组,求解即可.【详解】解:设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,由题意得:,由②得:,即③;把③代入①得:,整理得:,即,把代入③得:,∵A邮票原有数量与三种邮票原有总数量之比为,∴,∴A邮票原有数量与三种邮票原有总数量之比为,故答案为:.【点睛】本题主要考查了列三元一次方程组的应用,列代数式,求代数式的值,关键是正确设元,并列出方程组.3、15【解析】【分析】设此时弟弟岁,哥哥岁,根据题意,因为弟弟与哥哥的年龄差等于哥哥与20岁的年龄差,哥哥与弟弟的年龄差等于弟弟与5岁的年龄差,列出二元一次方程组求解即可.【详解】设此时弟弟岁,哥哥岁,由题意:,解得:,∴此时哥哥的年龄是15岁,故答案为:15.【点睛】本题考查二元一次方程组的实际应用,理解题意,准确建立二元一次方程组并求解是解题关键.4、 2 -1【解析】【分析】根据同类项的概念建立关于x,y的方程组,解方程组即可得出答案.【详解】∵与是同类项, 解得 故答案为:2,-1.【点睛】本题主要考查同类项,掌握同类项的概念及解二元一次方程组的方法是关键.5、【解析】【分析】根据已知解集确定出a与b的值,代入方程组求出解即可.【详解】解:解不等式得:,解不等式得:,∵不等式组的解集为-2<x<3.∴a=2,b=3,代入方程组得:,①-②得:4y=4,即y=1,把y=1代入①得:x=2,则方程组的解为,故答案为:.【点睛】本题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.三、解答题1、(1)-4;(2);(3), 把解集在数轴上表示见解析.【分析】(1)根据实数的运算法则进行运算,即可得出结论;(2)原方程组运用加减消元法求解即可得出结论;(3)分别解不等式①②,取其解集的并集,由此即可得出不等式组的解集,再将其表示在数轴上即可.【详解】解:(1)= ===-4 (2)解:,①②,得,解得:,把代入①,得,解得:,所以方程组的解是 (3)解:,由①得到,,解得,, 由②得到,, 解得,,, 在数轴上表示如下:.【点睛】本题考查了实数的运算、解一元一次不等式组、解二元一次方程组以及在数轴上表示不等式的解集,解题的关键是:(1)根据实数的运算法则进行运算;(2)熟练掌握方程组的解法;(3)熟练掌握不等式组的解法.本题属于基础题,难度不大,解决该题型题目时,熟练掌握不等式(不等式组以及方程组)的解法是关键.2、动点M每秒运动5个单位长度,动点N每秒运动2个单位长度【分析】设动点M、N运动的速度分别是每秒x、y个单位长度,根据“若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.”列出方程组,解出即可.【详解】解:设动点M、N运动的速度分别是每秒x、y个单位长度,∵点A、B表示的数分别是-20、64,∴线段AB长为,∴由题意有,解得∴动点M每秒运动5个单位长度,动点N每秒运动2个单位长度.【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.3、【分析】把代入方程组求得、的值,即可求得的值.【详解】把代入二元一次方程组得:,解得:∴.【点睛】本题考查了二元一次方程组的解:同时满足二元一次方程组的两个方程的未知数的值叫二元一次方程组的解.4、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论.【详解】解:(1)设食品有箱,矿泉水有箱,依题意,得,解得,答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3≤m≤5,又∵m为正整数,∴m可以为3,4,5,∴共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元).∵4950<5100<5250,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费.5、(1);(2).【分析】(1)把②代入①得出3(y+3)+2y=14,,求出y,把y=1代入②求出x即可;(2)②×3-①×4得: x=3,,把x=3代入①求出y即可.【详解】解:(1)(代入法),把②代入①得:3(y+3)+2y=14,解得:y=1,把y=1代入②得:x=1+3=4,所以方程组的解是;(2).(加减法)②×3-①×4得: x=3,把x=3代入①得:6+3y=12,解得:y=2,所以方程组的解.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共19页。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试测试题,共19页。试卷主要包含了下列是二元一次方程的是,下列各式中是二元一次方程的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共20页。试卷主要包含了下列是二元一次方程的是,方程x+y=6的正整数解有等内容,欢迎下载使用。