七年级下册第五章 二元一次方程组综合与测试达标测试
展开
这是一份七年级下册第五章 二元一次方程组综合与测试达标测试,共19页。试卷主要包含了若是方程组的解,则的值为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.2、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.3、下列方程组中是三元一次方程组的是( ).A. B.C. D.4、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )A. B. C. D.5、图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x的值应为( ).
A.-4 B.-3 C.3 D.46、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是( ).A. B. C. D.7、用代入法解方程组,以下各式正确的是( )A. B.C. D.8、若是方程组的解,则的值为( )A.16 B.-1 C.-16 D.19、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=810、若是关于x、y的二元一次方程ax-5y=1的解,则a的值为( )A.-5 B.-1 C.9 D.11第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知实数x,y满足x+y=3,且x>﹣3,y≥1,则x﹣y的取值范围____.2、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中A,B,C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%,则甲种粗粮中每袋成本价为 ___元;若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是 ___.3、若x、y的值满足,,,则k的值等于________.4、已知方程组有无数多个解,则a、b的值等于________.5、已知x、y满足方程组,则的值为__________.三、解答题(5小题,每小题10分,共计50分)1、已知关于x,y的二元一次方程组与有相同的解.(1)求x,y的值;(2)求的值.2、已知关于x,y的二元一次方程组.(1)当方程组的解为时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.3、甲、乙两人同时计算一道整式乘法题:(2x+a)•(3x+b).甲由于抄错了第一个多项式中a的符号,即把+a抄成﹣a,得到的结果为6x2+11x﹣10,乙由于抄漏了第二个多项式中x的系数,即把3x抄成x,得到的结果为2x2﹣9x+10,请你计算出这道整式乘法题的正确结果.4、用加减消元法解下列方程组:(1) (2) (3) (4)5、若方程组是二元一次方程组,求a的值. ---------参考答案-----------一、单选题1、B【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.2、A【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.3、D【分析】三元一次方程组中共含有三个未知数,并且含未知数的项的次数都是1,每个方程都是整式方程,由此进行判断即可.【详解】解:A、a的最高次数是2,选项错误;B、x、y、z的最高次数都是2,选项错误;C、每个方程都是分式方程,选项错误;D、符合题意,选项正确.故选:D【点睛】本题考查三元一次方程组的识别,牢记定义是解题的切入点.4、A【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【详解】解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,故选:A.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.5、A【分析】如图所示,其中a、b、c、d表示此方格中表示的数,则可得由此即可得到④,⑤,然后把④⑤代入③中即可求解.【详解】解:如图所示,其中a、b、c、d表示此方格中表示的数,由题意得:,由①得④,由②得⑤,把④和⑤代入③中得,∴,故选A.【点睛】本题主要考查了解方程组,解题得关键在于能够利用整体代入的思想进行求解.6、A【分析】此题中的等量关系有:, ,根据等量关系列出方程即可.【详解】设∠ABD和∠DBC的度数分别为x°,y°,则有整理得:,故选:A.【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7、B【分析】根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.【详解】解:由②得,代入①得,移项可得,故选B.【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键.8、C【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得,两式相加得;两式相差得:,∴,故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9、A【分析】把代入求出;再把代入求出数■即可.【详解】解:把代入得,,解得,;把代入得,,解得,;故选A【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.10、D【分析】把代入ax-5y=1解方程即可求解.【详解】解:∵是关于x、y的二元一次方程ax-5y=1的解,∴将代入ax-5y=1,得:,解得:.故选:D.【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.二、填空题1、【解析】【分析】先设x﹣y=m,利用x+y=3,构造方程组,求出用m表示x、y的代数式,再根据x>﹣3,y≥1,列不等式求出m的范围即可.【详解】解:设x﹣y=m,∴,②+①得,②-①得,∵y≥1,∴,解得,∵x>﹣3,∴,解得,∴,x﹣y的取值范围.故答案为.【点睛】本题考查方程与不等式综合问题,解题关键是设出x﹣y=m,与x+y=3,构造方程组从中求出,,再出列不等式.2、 45 或8:9##8:9或【解析】【分析】先用求出甲中粗粮的成本价,再求出1千克B粗粮成本价+1千克C粗粮成本价,得出乙种粗粮每袋售价,然后设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程求出比例关系.【详解】解:∵甲种粗粮每袋售价为58.5元,利润率为30%,∴甲种粗粮中每袋成本价为元,∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,∴1千克B粗粮成本价+1千克C粗粮成本价=45-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为乙种粗粮每袋成本价为6+2×27=60(元),60×(1+20%)=72(元).设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,即,故答案为:45,.【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.3、-4【解析】【分析】由题意可联立方程组,由①②可解出、的值,代入③即可得出答案.【详解】由题意可得:,①×3+②得:,解得:,代入①得:,将,,代入③得,,解得.【点睛】本题考查解二元一次方程组,掌握把k看作常数,熟练掌握二元一次方程组的解法是解题的关键.4、a=﹣3,b=﹣14##b=-14,a=-3【解析】【分析】根据二元一次方程组有无数多个解的条件得出 ,由此求出a、b的值.【详解】解:∵方程组有无数多个解,∴,∴a=−3,b=−14.故答案为:a=﹣3,b=﹣14.【点睛】本题考查了对二元一次方程组的应用,注意:方程组 中,当时,方程组有无数解.5、1【解析】【分析】利用整体思想直接用方程①-②即可得结果.【详解】解:,①-②得,4x+4y=4,x+y=1,故答案为:1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组,解决本题的关键是掌握整体思想.三、解答题1、(1),(2)1.【分析】(1)首先联立两个方程组中不含a、b的两个方程求得方程组的解,(2)根据(1)中方程组的解代入两个方程组中含a、b的两个方程从而得到关于a,b的方程组,求出a、b的值,代入代数式中求值即可.【详解】解:(1)联立不含a、b的两个方程得,解这个方程组得,(2)把,代入得,解得:,∴.【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,代数式的值,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.2、(1)3;(2);(3)小冉提出的解法不对,理由见解析【分析】(1)把代入中即可得解;(2)当a=﹣2时,方程组变为,计算即可;(3)根据判断得出不是方程组的解,计算即可;【详解】(1)将代入中得:;(2)当a=﹣2时,方程组为,得:,解得:,∴,∴方程组的解为;(3)小冉提出的解法不对,∵不是方程的解,∴不是该方程组的解,则不一定是方程x+2y=a的解,因此不能代入求解;【点睛】本题主要考查二元一次方程组的解得应用,准确分析计算是解题的关键.3、6x2﹣19x+10【分析】根据甲、乙两人看错的多项式分计算,然后跟甲、乙两人的结果对比,列出关于a,b的方程,即可解答.【详解】解:(2x﹣a)•(3x+b)=6x2+2bx﹣3ax﹣ab=6x2+(2b﹣3a)x﹣ab,∴2b﹣3a=11 ①,(2x+a)•(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab,∴2b+a=﹣9 ②,由①和②组成方程组,解得:,∴(2x﹣5)•(3x﹣2)=6x2﹣4x﹣15x+10=6x2﹣19x+10.【点睛】本题主要考查多项式乘多项式,熟记法则:用多项式的每一项乘另一个多项式的每一项是解决此类问题的关键,同时还考查了加减法解二元一次方程组.4、(1) (2) (3) (4)【分析】(1)利用加减消元法,将方程①+②,即可求解;(2)利用加减消元法,将方程②-①×2,即可求解;(3)利用加减消元法,将方程①-②,即可求解;(4)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)①+②得:9x=45,即x=5,把x=5代入①得:y=2,则方程组的解为;(2)②-①×2得:13y=65,即y=5,把y=5代入②得:x=则方程组的解为;(3)①-②得:12y=-36,即y=-3,把y=-3代入①得:x=则方程组的解为;(4)方程组整理得:①-②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,做题的关键是当未知数系数相等时将方程相减,未知数系数相反时将方程相加.5、a=﹣3【分析】根据了二元一次方程组的定义,可得 且a﹣3≠0,解出即可【详解】解:∵方程组是二元一次方程组,∴ 且a﹣3≠0,∴a=﹣3.【点睛】本题主要考查了二元一次方程组的定义,熟练掌握含有两个未知数,且未知数的次数都是1的整式方程是二元一次方程,而由两个二元一次方程组成的方程组就是二元一次方程组是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试随堂练习题,共19页。试卷主要包含了如果与是同类项,那么的值是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试习题,共19页。
这是一份初中北京课改版第五章 二元一次方程组综合与测试巩固练习,共22页。试卷主要包含了若方程组的解为,则方程组的解为,如图,9个大小,已知是二元一次方程,则的值为等内容,欢迎下载使用。