北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共18页。试卷主要包含了已知,则,下列方程组为二元一次方程组的是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知关于x、y的方程组的解满足2x﹣y=2k,则k的值为( )
A.k B.k C.k D.k
2、若是方程的解,则等于( )
A. B. C. D.
3、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )
A.6台 B.7台 C.8台 D.9台
4、已知,则( )
A. B. C. D.
5、用加减法将方程组中的未知数x消去后,得到的方程是( ).
A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16
6、下列方程组为二元一次方程组的是( )
A. B. C. D.
7、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )
A.1,0 B.0,﹣1 C.2,1 D.2,﹣3
8、下列各组数中,是二元一次方程组的解的是( )
A. B. C. D.
9、关于的二元一次方程组的解满足,则k的值是( )
A.2 B. C. D.3
10、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )
A.﹣ B. C. D.﹣
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知是关于x,y的二元一次方程组的解,则的值为____________.
2、二元一次方程组的解为 _____.
3、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.
4、如图,三个全等的小矩形沿“横一竖一横“排列在一个大的边长分别为12.34,23.45的矩形中,则图中一个小矩形的周长等于_________.
5、已知方程组的解也是方程 的解,则a= _____,b= ____ .
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:.
2、用代入法解方程组:
3、(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.
(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值.
4、解方程(组):
(1);
(2).
5、甲、乙两人同时计算一道整式乘法题:(2x+a)•(3x+b).甲由于抄错了第一个多项式中a的符号,即把+a抄成﹣a,得到的结果为6x2+11x﹣10,乙由于抄漏了第二个多项式中x的系数,即把3x抄成x,得到的结果为2x2﹣9x+10,请你计算出这道整式乘法题的正确结果.
---------参考答案-----------
一、单选题
1、A
【分析】
根据得出,,然后代入中即可求解.
【详解】
解:,
①+②得,
∴③,
①﹣③得:,
②﹣③得:,
∵,
∴,
解得:.
故选:A.
【点睛】
本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.
2、B
【分析】
把代入到方程中得到关于k的方程,解方程即可得到答案.
【详解】
解:∵是方程的解,
∴,
∴,
故选B.
【点睛】
本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.
3、B
【分析】
设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.
【详解】
解:设同时开动x台机组,每台机组每小时处理a吨污水,
依题意,得,
解得:,
∵5ax=30a+5a,
∴x=7.
答:要同时开动7台机组.
故选:B.
【点睛】
本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.
4、B
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
5、D
【分析】
根据二元一次方程组的加减消元法可直接进行求解.
【详解】
解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;
故选D.
【点睛】
本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.
6、B
【分析】
根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;
【详解】
解A.中,xy的次数是2,故A不符合题意;
B.是二元一次方程组,故B符合题意;
C.中y在分母上,故C不符合题意;
D.中有3个未知数,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.
7、C
【分析】
根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.
【详解】
解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,
∴ ,
解得:.
故选:C
【点睛】
本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.
8、B
【分析】
由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.
【详解】
解:,
得③,
得④,
③+④得,解得,
将代入②得,解得,
所以是二元一次方程组的解.
故选:B.
【点睛】
本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.
9、B
【分析】
解方程组,用含的式子表示,然后将方程组的解代入即可.
【详解】
解:,
①-②得:,
∵,
∴,
解得:,
故选:B.
【点睛】
本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.
10、B
【分析】
解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.
【详解】
解:,
①+②得:2x=14k,即x=7k,
将x=7k代入①得:7k+y=5k,即y=﹣2k,
将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,
解得:k=.
故选:B.
【点睛】
此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.
二、填空题
1、0
【解析】
【分析】
结合题意,根据二元一次方程组的性质,将代入到原方程组,得到关于a和b的二元一次方程组,通过求解即可得到a和b,结合代数式的性质计算,即可得到答案.
【详解】
∵是关于x,y的二元一次方程组的解
∴将代入到,得
∴
∴
故答案为:0.
【点睛】
本题考查了二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.
2、
【解析】
【分析】
利用加减消元法解二元一次方程组即可得到答案.
【详解】
解:,
用①+②得:,解得,
把代入①中得:,解得,
∴方程组的解为.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.
3、3
【解析】
【分析】
先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.
【详解】
解:∵x2a﹣3+yb+2=3是二元一次方程,
∴2a﹣3=1,b+2=1,
∴a=2,b=﹣1,
则a﹣b=2﹣(﹣1)=2+1=3.
故答案为:3.
【点睛】
本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.
4、23.86
【解析】
【分析】
设小矩形的长为x,宽为y,根据图形列出二元一次方程组,根据小矩形的周长为结合方程组直接可得.
【详解】
设小矩形的长为x,宽为y,由题意得:,
①+②得,,
则一个小矩形的周长为:.
故答案为:
【点睛】
本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.
5、 3 1
【解析】
【分析】
根据同解原理将方程组重新组合,解方程组求出,然后代入求解即可.
【详解】
解:∵方程组的解也是方程 的解,
重新组合,
①×7-②得:
,
x=2,
把x=2代入①得y=1
∴,
代入 ,得关于a、b的方程组,
解得
故答案为3;1.
【点睛】
本题考查方程组同解问题,掌握方程组同解可以重新调整方程组成新方程组是解题关键.
三、解答题
1、
【分析】
根据加减消元法解方程组即可;
【详解】
解:,
得:,,
把代入①中:,
解得:,
∴方程组的解是.
【点睛】
本题主要考查了二元一次方程组的求解,准确计算是解题的关键.
2、
【分析】
把①变形得③,代入②求出x,然后把x的值代入③再求出y即可;
【详解】
解:,
由①得③,
将③代入②中,得,
解得,
将代入③中,得.
所以原方程组的解是
【点睛】
本题考查了代入消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个方程为用含一个未知数的代数式表示另一个未知数的形式,若不具备这种特征,则根据等式的性质将其中一个方程变形,使其具备这种形式.
3、(1)a=0;(x+1)(x2x+1);(2)31;
【分析】
(1)先将x=1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定b、c的值,再因式分解多项式;
(2)设3x4+ax3+bx34=(x+1)(x2)•M,则x=1,x=2是方程3x4+ax3+bx34=0的解,然后解关于a、b的方程组,即可得到答案.
【详解】
解:(1)∵x+1是多项式x3+ax+1的因式,
∴当x=1时,x3+ax+1=0,
∴1a+1=0,
∴a=0,
令x3+1=(x+1)(x2+bx+c),
而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,
∵等式两边x同次幂的系数相等,
即x3+(b+1)x2+(c+b)x+c=x3+1,
∴,
解得:,
∴a的值为0,x3+1=(x+1)(x2x+1);
(2)设3x4+ax3+bx34=(x+1)(x2)•M(其中M为二次整式),
∴x=1,x=2是方程3x4+ax3+bx34=0的解,
∴
∴,
∴a+b=8+(39)=31;
【点睛】
本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题.
4、(1)x=;(2)
【分析】
(1)方程去分母,去括号,移项,合并同类项,系数化为1即可;
(2)方程组利用加减消元法求解即可.
【详解】
解:(1),
去分母,得2(2x﹣1)+(x﹣2)=4,
去括号,得4x-2+x﹣2=4,
移项,得4x+x=4+2+2,
合并同类项,得5x=8,
系数化为1,得x=;
(2),
①×2+②,得,
解得x=2,
把x=2代入②,得8﹣2y=10,
解得x=﹣1,
故方程组的解为.
【点睛】
此题主要考查一元一次方程与二元一次方程组的求解,解题的关键是熟知其解法的运用.
5、6x2﹣19x+10
【分析】
根据甲、乙两人看错的多项式分计算,然后跟甲、乙两人的结果对比,列出关于a,b的方程,即可解答.
【详解】
解:(2x﹣a)•(3x+b)
=6x2+2bx﹣3ax﹣ab
=6x2+(2b﹣3a)x﹣ab,
∴2b﹣3a=11 ①,
(2x+a)•(x+b)
=2x2+2bx+ax+ab
=2x2+(2b+a)x+ab,
∴2b+a=﹣9 ②,
由①和②组成方程组,
解得:,
∴(2x﹣5)•(3x﹣2)
=6x2﹣4x﹣15x+10
=6x2﹣19x+10.
【点睛】
本题主要考查多项式乘多项式,熟记法则:用多项式的每一项乘另一个多项式的每一项是解决此类问题的关键,同时还考查了加减法解二元一次方程组.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试当堂检测题,共19页。试卷主要包含了二元一次方程组的解是,若是关于x,下列方程组为二元一次方程组的是等内容,欢迎下载使用。
这是一份初中数学第五章 二元一次方程组综合与测试测试题,共21页。试卷主要包含了已知方程组中,x,下列各式中是二元一次方程的是等内容,欢迎下载使用。
这是一份初中北京课改版第五章 二元一次方程组综合与测试课时作业,共18页。试卷主要包含了已知,则,下列方程是二元一次方程的是等内容,欢迎下载使用。