北京课改版八年级下册第十六章 一元二次方程综合与测试同步训练题
展开京改版八年级数学下册第十六章一元二次方程定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、用配方法解一元二次方程x2﹣10x+21=0,下列变形正确的是( )
A.(x﹣5)2=4 B.(x+5)2=4 C.(x﹣5)2=121 D.(x+5)2=121
2、下列命题中,逆命题不正确的是( )
A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0
B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
C.全等三角形对应角相等
D.直角三角形的两条直角边的平方和等于斜边的平方
3、某商品售价准备进行两次下调,如果每次降价的百分率都是x,经过两次降价后售价由298元降到了268元,根据题意可列方程为( ).
A. B.
C. D.
4、解一元二次方程x2-6x-4=0,配方后正确的是( )
A.(x+3)2=13 B.(x-3)2=5 C.(x-3)2=4 D.(x-3)2=13
5、方程2x2-3x=2的一次项系数和常数项分别是( )
A.3和2 B.-3和2 C.3和-2 D.-3和-2
6、一元二次方程x2+2x=1的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
7、若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0(a≠0)的一个根,则2021﹣2a+2b的值等于( )
A.2015 B.2017 C.2019 D.2022
8、方程x2﹣x=0的解是( )
A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=1
9、一元二次方程x2=-2x的解是( )
A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=-2
10、关于x的方程有两个不相等的实数根,则n的取值范围是( )
A.n< B.n ≤ C.n> D.n>
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、现规定一种新的运算:,当时,则的值为____.
2、2021年10月10日,第七届黑龙江绿色食品产业博览会开幕,虎林市组建团队参加,为增进了解,在参加会议前团队每两个人间互送了一次名片,一共送出90张名片,则这个团队有_______人.
3、若关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,则实数k的取值范围是 _____.
4、已知关于的一元二次方程有一个根为1,一个根为,则_________,__________.
5、智能音箱是市场上最火的智能产品之一,某商户一月份销售了100个智能音箱,三月份比一月份多销售44个,设该公司二、三月销量的月平均增长率为x,则可列方程为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、已知关于的一元二次方程.
(1)求证:该方程总有两个实数根;
(2)若该方程有一个根小于2,求的取值范围.
2、解下列方程:
(1);
(2).
3、解方程:
(1) 2x2-4x-3=0.
(2)3x(x-1)=2-2x.
4、阅读材料:
材料1 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2,x1*x2.
材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.
解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1,
所以.
根据上述材料解决以下问题:
(1)材料理解:
一元二次方程5x2+10x﹣1=0的两个根为x1,x2,则x1+x2= ,x1x2= .
(2)类比探究:
已知实数m,n满足7m2﹣7m﹣1=0,7n2﹣7n﹣1=0,且m≠n,求m2n+mn2的值:
5、中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均年收入20000元,到2019年人均年收入达到28800元.假设该地区居民年人均收入平均增长率都相同.
(1)求该地区居民年人均收入平均增长率;
(2)请你预测该地区2022年人均年收入.
-参考答案-
一、单选题
1、A
【分析】
利用配方法,方程的两边同时加上一次项系数一半的平方,即可求解.
【详解】
解:x2﹣10x+21=0,
移项得: ,
方程两边同时加上25,得: ,
即 .
故选:A
【点睛】
本题主要考查了利用配方法解一元二次方程,熟练掌握利用配方法,需要方程的两边同时加上一次项系数一半的平方是解题的关键.
2、C
【分析】
分别写出各个命题的逆命题,然后判断正误即可.
【详解】
解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;
B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;
C.逆命题为:对应角相等的两三角形全等,错误,符合题意;
D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.
故选:C
【点睛】
本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.
3、D
【分析】
根据该商品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.
【详解】
解:依题意得:298(1-x)2=268.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
4、D
【分析】
根据配方法即可求出答案.
【详解】
解:∵x2﹣6x﹣4=0,
∴x2﹣6x=4,
∴x2﹣6x+9=13,
∴(x﹣3)2=13,
故选D.
【点睛】
本题考查了配方法解方程,注意配方时先把常数项移到右边,然后把二次项系数化为1,最后等号两面同时加上一次项系数一半的平方.
5、D
【分析】
先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得.
【详解】
解:
一次项系数为:-3,常数项为:-2,
故选D.
【点睛】
本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式.
6、A
【分析】
方程整理后得出x2+2x﹣1=0,求出Δ=8>0,再根据根的判别式的内容得出答案即可.
【详解】
解:x2+2x=1,
整理得,x2+2x﹣1=0,
∵Δ=22﹣4×1×(﹣1)=8>0,
∴方程有两个不相等的实数根,
故选:A.
【点睛】
本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.
7、B
【分析】
根据一元二次方程根的定义将代入方程ax2+bx﹣2=0可得,即,整体代入到代数式中求解即可,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.
【详解】
解:将代入方程ax2+bx﹣2=0可得,即
2021﹣2a+2b=
故选B
【点睛】
本题考查了一元二次方程的解,代数式求值,整体代入是解题的关键.
8、D
【分析】
因式分解后求解即可.
【详解】
x2﹣x=0,
x(x-1)=0,
x=0,或x-1=0,
解得x1=0,x2=1,
故选:D
【点睛】
此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
9、D
【分析】
先移项、然后再利用因式分解法解方程即可.
【详解】
解 :x2=-2x
x2+2x=0
x(x+2)=0,
x=0或x+2=0,
所以x1=0,x2=-2.
故选:D.
【点睛】
本题考查了解一元二次方程−因式分解法,把解一元二次方程的问题转化为解一元一次方程的问题成为解答本题的关键.
10、A
【分析】
利用判别式的意义得到△=>0,然后解不等式即可.
【详解】
解:
根据题意得△=(﹣3)²﹣4n>0,
解得n< .
故选:A.
【点睛】
此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.
二、填空题
1、2或3或2
【分析】
根据新定义运算把原式转化成一元二次方程,解方程即可.
【详解】
解:由可得,;
,
,
,
解得,;
故答案为:2或3.
【点睛】
本题考查了新定义运算和解一元二次方程,解题关键是根据题意把原式转化为一元二次方程.
2、10
【分析】
设这个团队有x人,根据“每两个人间互送了一次名片,一共送出90张名片,”列出方程求解即可.
【详解】
解:设这个团队有x人,则
x(x-1)=90,
解得:(舍),
∴个团队有10,
故答案为:10.
【点睛】
本题考查了由实际问题抽象出一元二次方程,解题的关键是根据题意列出方程.
3、 且
【分析】
利用一元二次方程根的判别式,即可求解.
【详解】
解:∵关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,
∴且 ,
解得: 且 .
故答案为: 且
【点睛】
本题考查了一元二次方程的定义,一元二次方程根的判别式,熟练掌握二次函数 ,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根是解题的关键.
4、0 0
【分析】
一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;分别将1和﹣1代入方程即可得到两个关系式的值.
【详解】
将1代入方程得:,
即;
将﹣1代入方程得:,即;
故答案为0,0.
【点睛】
本题考查了一元二次方程的根,即方程的解的定义,深刻理解根的定义是解题关键.
5、100(1+x)2=144.
【分析】
设该公司二、三月销量的月平均增长率为x,利用增长率表示三月销量100(1+x)2,列方程即可.
【详解】
解:设该公司二、三月销量的月平均增长率为x,
则可列方程为100(1+x)2=100+44,
即100(1+x)2=144,
故答案为:100(1+x)2=144.
【点睛】
本题考查一元二次方程解增长率问题应用题,掌握一元二次方程解增长率问题应用题方法与步骤,抓住等量关系利用增长率表示三月销售智能音箱100(1+x)2与100+44相等列方程是解题关键.
三、解答题
1、(1)证明见解析;(2).
【分析】
(1)根据方程的系数结合根的判别式,可得△=(k−4)2≥0,由此可证出方程总有两个实数根;
(2)利用分解因式法解一元二次方程,可得出x1=4,x2=k,根据方程有一根小于2,即可得出k的取值范围.
【详解】
(1)∵,
∴△=,
∴方程总有两个实数根.
(2)∵,
∴,
解得:,,
∵该方程有一个根小于2,
∴.
【点睛】
本题考查了根的判别式、因式分解法解一元二次方程,利用因式分解法解一元二次方程表示出方程的两个根,熟练掌握当△≥0时,方程有两个实数根是解题关键.
2、(1),;(2)
【分析】
(1)先求解 再利用求根公式解方程即可;
(2)先移项,把方程的右边化为0,再把方程的左边分解因式,化为两个一次方程,再解一次方程即可.
【详解】
解:(1)
即
(2)
或
解得:
【点睛】
本题考查的是公式法,因式分解法解一元二次方程,掌握“一元二次方程的求根公式”是解本题的关键.
3、(1)x1=1+,x2=1-;(2)x1=1,
【分析】
(1)根据公式法解一元二次方程即可;
(2)根据因式分解的方法解一元二次方程
【详解】
解:(1)2x2-4x-3=0
a=2,b=-4,c=-3,
△=16+24=40>0,
,
∴x1=1+,x2=1-
(2)3x(x-1)+2(x-1)=0,
(x-1)(3x+2)=0,
x-1=0或3x+2=0,
所以x1=1,
【点睛】
本题考查了解一元二次方程,掌握解一元二次方程的解法是解题的关键.
4、(1)﹣2;;(2)m2n+mn2=.
【分析】
(1)直接根据根与系数的关系可得答案;
(2)由题意得出m、n可看作方程,据此知m+n=1,mn=,将其代入计算可得;
【详解】
解:(1)∵一元二次方程5x2+10x﹣1=0的两个根为x1,x2,
∴x1+x2,x1x2;
故答案为:﹣2;;
(2)∵7m2﹣7m﹣1=0,7n2﹣7n﹣1=0,且m≠n,
∴m、n可看作方程7x2﹣7x﹣1=0,
∴m+n=1,mn,
∴m2n+mn2=mn(m+n);
【点睛】
本题主要考查根与系数的关系,求代数式的值,解题的关键是根据题意建立合适的方程及运算法则进行解题.
5、(1)20%;(2)49766.4元
【分析】
(1)设该地区居民年人均收入平均增长率为x,则2019年人均年收入可以表示为: 再列方程解方程即可;
(2)2022年人均年收入可以表示为28800×(1+0.2)3,再计算即可.
【详解】
解:(1)设该地区居民年人均收入平均增长率为x,
20000(1+x)2=28800,
解得,x1=0.2,x2=﹣2.2(舍去),
∴该地区居民年人均收入平均增长率为20%
(2)28800×(1+0.2)3=49766.4(元)
答:该地区2022年人均年收入是49766.4元.
【点睛】
本题考查的是一元二次方程的应用,掌握“利用一元二次方程解决增长率问题”是解本题的关键.
数学北京课改版第十六章 一元二次方程综合与测试当堂检测题: 这是一份数学北京课改版第十六章 一元二次方程综合与测试当堂检测题,共17页。试卷主要包含了一元二次方程的二次项系数等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测,共15页。试卷主要包含了已知关于x的一元二次方程,若a是方程的一个根,则的值为,下列方程中是一元二次方程的是,一元二次方程的两个根是等内容,欢迎下载使用。
2021学年第十六章 一元二次方程综合与测试精练: 这是一份2021学年第十六章 一元二次方程综合与测试精练,共17页。试卷主要包含了一元二次方程的解为,若方程的一个根为,则的值是,一元二次方程的根的情况是等内容,欢迎下载使用。