初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试习题
展开京改版八年级数学下册第十六章一元二次方程章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列方程中,是关于x的一元二次方程是( )
A. B. C. D.
2、关于x的方程有两个不相等的实数根,则n的取值范围是( )
A.n< B.n ≤ C.n> D.n>
3、小亮、小明、小刚三名同学中,小亮的年龄比小明的年龄小2岁,小刚的年龄比小明的年龄大1岁,并且小亮与小刚的年龄的乘积是130.你知道这三名同学的年龄各是多少岁吗?设小明的年龄为x岁,则可列方程为( )
A. B.
C. D.
4、若关于x的一元二次方程的一根为1,则k的值为( ) .
A.1 B. C. D.0
5、下表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为( )
x | ﹣2.1 | ﹣2.2 | ﹣2.3 | ﹣2.4 |
y | ﹣1.39 | ﹣0.76 | ﹣0.11 | 0.56 |
A.x≈﹣2.15 B.x≈﹣2.21 C.x≈﹣2.32 D.x≈﹣2.41
6、如图,在一块长为30m,宽为20m的矩形地面上,要修建同样宽的两条互相垂直的道路,剩余部分种上草坪,使草坪面积为300m2,若设道路宽为xm,则根据题意可列方程为( )
A. B.
C. D.
7、已知关于x的一元二次方程x2﹣(2m+3)x+m2=0有两根α,β.若=1,则m的值为( )
A.3 B.﹣1 C.3或﹣1 D.
8、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为( )
A.x1=0,x2=-3 B.x1=-1,x2=-4
C.x1=0,x2=3, D.x1=2,x2=-1
9、目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到3.92万户,设全市5G用户数年平均增长率为x,则x值为( )
A.20% B.30% C.40% D.50%
10、方程(x-1)2 = 0的根是( )
A.x = - 1 B.x1 = x2 = 1 C.x1 =x2= - 1 D.x1 = 1,x2 = -1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,那么的值是______.
2、设m,n分别为一元二次方程的两个实数根,则______.
3、解一元二次方程x2﹣7x=0的最佳方法是 _____.
4、已知关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,则k的取值范围是 _____.
5、现规定一种新的运算:,当时,则的值为____.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:(1) x(x -2)+ x -2 = 0 (2) x2 - 4x + 1 = 0 (用配方法)
2、解方程:
(1)2(x﹣1)2﹣16=0;
(2)x2+5x+7=3x+11.
3、国家鼓励大学生自主创业,并有相关的支持政策,受益于支持政策的影响,某大学生自主创立的公司利润逐年提高,据统计,2017年利润为200万元,2019年利润为288万元,求该公司从2017年到2019年利润的年平均增长率.
4、已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.
5、设,是关于的一元二次方程的两个实数根.
(1)求的取值范围;
(2)若,求的值.
-参考答案-
一、单选题
1、C
【分析】
根据只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程选择即可.
【详解】
A.当a=0时,是一元一次方程,该选项不符合题意;
B.分母上有未知数,是分式方程,该选项不符合题意;
C.是关于x的一元二次方程,该选项符合题意;
D.经整理后为,是一元一次方程,该选项不符合题意.
故选择C.
【点睛】
本题考查识别一元二次方程,理解一元二次方程的定义是解答本题的关键.
2、A
【分析】
利用判别式的意义得到△=>0,然后解不等式即可.
【详解】
解:
根据题意得△=(﹣3)²﹣4n>0,
解得n< .
故选:A.
【点睛】
此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.
3、B
【分析】
设小明的年龄为x岁,则可用x表示出小亮的年龄和小刚的年龄.再根据小亮与小刚的年龄的乘积是130,即可列出方程.
【详解】
设小明的年龄为x岁,则小亮的年龄为岁,小刚的年龄为岁,
根据题意即可列方程:.
故选:B.
【点睛】
本题考查一元二次方程的实际应用.理解题意,正确找出题干中的数量关系列出等式是解答本题的关键.
4、B
【分析】
把方程的根代入方程可以求出k的值.
【详解】
解:把1代入方程有:
1+2k+1=0,
解得:k=-1,
故选:B.
【点睛】
本题考查的是一元二次方程的解,正确理解题意是解题的关键.
5、C
【分析】
根据表可得,方程2x2﹣2x﹣10=0的一个解应在﹣2.3与﹣2.4之间,再由y的值可得,它的根近似的看作是﹣2.3.
【详解】
∵当x=﹣2.3时,y=﹣0.11,
当x=﹣2.4时,y=0.56,
则方程的根﹣2.3<x<﹣2.4,
∵|﹣0.11|<|0.56|,
∴方程2x2﹣2x﹣10=0的一个近似解为x≈﹣2.32.
故选:C.
【点睛】
本题考查了用图象法求一元二次方程的近似根,解题的关键是看y值的变化.
6、B
【分析】
根据题意草坪的长为m,宽为m,根据长方形的面积公式列出一元二次方程即可
【详解】
解:设道路宽为xm,则根据题意可列方程为
故选B
【点睛】
本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
7、A
【分析】
先利用根的判别式得到m≥,再根据根与系数的关系得α+β=2m+3,αβ=m2,则2m+3=m2,然后解关于m的方程,最后利用m的范围确定m的值.
【详解】
解:根据题意得Δ=(2m+3)2﹣4m2≥0,
解得m≥,
根据根与系数的关系得α+β=2m+3,αβ=m2,
∵=1,
∴α+β=αβ,即2m+3=m2,
整理得m2﹣2m﹣3=0,解得m1=3,m2=﹣1,
∵m≥,
∴m的值为3.
故选:A.
【点睛】
本题考查的是一元二次方程根的判别式,根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,是解答此题的关键.
8、D
【分析】
首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,,然后代入一元二次方程ax2-bx+c=3中即可求解.
【详解】
解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,
∴一元二次方程ax2+bx+c=3有一个根为1,
∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,
∴,,
∵ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即,
∴,
∴,
∴或,
解得:.
故选:D.
【点睛】
此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.
9、C
【分析】
先用含x的代数式表示出2021年底5G用户的数量, 然后根据2021年底5G用户数为3.92万户列出关于x的方程,解方程即得答案.
【详解】
解:设全市5G用户数年平均增长率为x,
根据题意,得: ,
整理得:,
∴,
解得:x1=0.4=40%,x2= −2.4(不合题意,舍去).
故选:C.
【点睛】
本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.
10、B
【分析】
根据直接开平方法可进行求解一元二次方程.
【详解】
解:
,
∴;
故选B.
【点睛】
本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.
二、填空题
1、-5
【分析】
先利用配方法把所求的代数式配方,然后代值计算即可.
【详解】
解:∵,
∴
,
故答案为:-5.
【点睛】
本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法.
2、2019
【分析】
由韦达定理可列出m,n的代数值,代入计算即可.
【详解】
∵m,n分别为一元二次方程的两个实数根
∴m+n=-2,
则
【点睛】
本题考查了韦达定理,如果的两个实数根是,那么,.推论1:如果方程的两个根是,那么,.推论2:以两个数为根的一元二次方程(二次项系数为1)是.
3、因式分解法
【分析】
将一元二次方程先提公因式然后计算即可.
【详解】
解:一元二次方程,即,
解得:,,
∴应采用因式分解法,
故答案为:因式分解法.
【点睛】
题目主要考查一元二次方程的因式分解法,熟练掌握因式分解法是解题关键.
4、
【分析】
根据方程的系数结合根的判别式Δ>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
【详解】
解:∵关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,
∴Δ=(﹣4)2﹣4×2×(k﹣)>0,
解得:.
故答案为:
【点睛】
本题考查了一元二次方程根的判别式,掌握一元二次方程根的判别式的符号对应的三种根的情况是解题的关键.(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.
5、2或3或2
【分析】
根据新定义运算把原式转化成一元二次方程,解方程即可.
【详解】
解:由可得,;
,
,
,
解得,;
故答案为:2或3.
【点睛】
本题考查了新定义运算和解一元二次方程,解题关键是根据题意把原式转化为一元二次方程.
三、解答题
1、(1),;(2),.
【分析】
(1)根据因式分解法解方程即可得;
(2)利用配方法将等号左边变为完全平方公式,然后开方求解即可.
【详解】
解:(1),
,
∴或,
解得:,;
(2),
,
,
∴或,
解得:,.
【点睛】
题目主要考查解一元二次方程的因式分解法和配方法,熟练运用两种方法是解题关键.
2、(1)x1=1+2,x2=1﹣2;(2)x1=﹣1+,x2=﹣1﹣.
【分析】
(1)利用直接开平方法求出方程的解即可;
(2)利用配方法求出方程的解即可.
【详解】
解:(1)整理,得2(x﹣1)2=16,
(x﹣1)2=8,
∴x﹣1=,
∴x1=1+2,x2=1﹣2;
(2)整理,得x2+2x=4,
配方,得x2+2x+1=4+1,即(x+1)2=5,
解得:
【点睛】
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
3、该公司从2017年到2019年利润的年平均增长率为20%
【分析】
设该公司从2017年到2019年利润的年平均增长率为x,然后根据2017年利润为200万元,2019年利润为288万元,列出方程求解即可.
【详解】
解:设该公司从2017年到2019年利润的年平均增长率为x,
由题意得:,
解得,
∴该公司从2017年到2019年利润的年平均增长率为20%,
答:该公司从2017年到2019年利润的年平均增长率为20%.
【点睛】
本题主要考查了一元二次方程的应用,解题的关键在于能够根据题意列出方程求解.
4、m的最大整数值为0
【分析】
根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可.
【详解】
解:∵关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,
∴b2﹣4ac=(2m)2﹣4(m﹣1)(m+3)=4m2﹣(4m2+8m﹣12)=4m2﹣4m2﹣8m+12=﹣8m+12≥0,m﹣1≠0,
解得:m≤且m≠1,
则m的最大整数值为0.
【点睛】
本题主要考查了一元二次方程根的判别式的应用,准确计算是解题的关键.
5、(1);(2)
【分析】
(1)由方程有两个实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;
(2)根据根与系数的关系即可得出,,结合m的取值范围即可得出,,再由即可得出,解之即可得出m的值.
【详解】
(1)依题意可知:,即,
解得:;
(2)依题意可知:,,
∵,
∴,,
∴,,
∵,
∴,
∴,
解得:或,
∵,
∴.
【点睛】
本题考查了根与系数的关系,根的判别式,解题的关键是掌握根与系数的关系,根的判别式的使用方法.
数学北京课改版第十四章 一次函数综合与测试一课一练: 这是一份数学北京课改版第十四章 一次函数综合与测试一课一练,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。
2021学年第十六章 一元二次方程综合与测试课后测评: 这是一份2021学年第十六章 一元二次方程综合与测试课后测评,共16页。试卷主要包含了下列方程是一元二次方程的是,方程x2﹣8x=5的根的情况是,把方程化成.等内容,欢迎下载使用。
北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业: 这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共16页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。