初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后作业题
展开京改版八年级数学下册第十六章一元二次方程章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、方程x2=4x的解是( )
A.x=4 B.x=2 C.x=4或x=0 D.x=0
2、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )
A. B.
C. D.
3、一元二次方程根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法判断
4、已知三角形的两边长是4和6,第三边的长是方程(x﹣3)2=4的根,则此三角形的周长为( )
A.17 B.11 C.15 D.11或15
5、将一元二次方程通过配方转化为的形式,下列结果中正确的是( )
A. B. C. D.
6、若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0(a≠0)的一个根,则2021﹣2a+2b的值等于( )
A.2015 B.2017 C.2019 D.2022
7、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )
A.5 B.3 C.-3 D.-4
8、一元二次方程x2+2x=1的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
9、为落实教育优先发展,南充市财政一般公共预算2019年教育经费投入93.15亿元,2021年教育经费投入99.45亿元,设南充市财政一般公共预算教育经费投入年平均增长率为x,则可列方程为( )
A. B.
C. D.
10、一元二次方程的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.无实数根
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、凌源市“百合节”观赏人数逐年增加,据有关部门统计,2018年约为5万人次,2020年约为6.8万人次,设观赏人数年均增长率为x,则可列方程________________.
2、设x1,x2是方程2x2+3x﹣4=0的两个实数根,则4x12+4x1﹣2x2的值为 ______.
3、若方程是关于的一元二次方程,则__________.
4、关于x的方程的一个根是,则m=________.
5、如图,一长为32m、宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化.若已知绿化面积为540㎡,则道路的宽为__________m.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:
(1)2(x﹣1)2﹣16=0;
(2)x2+5x+7=3x+11.
2、阅读与思考
配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和.巧妙的运用“配方法”能对一些多项式进行因式分解.
例如:
(1)解决问题:运用配方法将下列多项式进行因式分解
①;
②
(2)深入研究:说明多项式的值总是一个正数?
(3)拓展运用:已知a、b、c分别是的三边,且,试判断的形状,并说明理由.
3、小林准备如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段在桌面上各围成一个正方形.
(1)要使这两个正方形的面积之和为,小林该如何剪?
(2)小峰对小林说:“这两个正方形的面积之和不可能等于.”他说的对吗?请说明理由.
4、用适当的方法解下列方程:
(1).
(2)
5、解方程:
(1);
(2).
-参考答案-
一、单选题
1、C
【分析】
本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.
【详解】
解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,
∴x=0或x=4
故选:C.
【点睛】
本题主要考查了一元二次方程的计算,准确分析计算是解题的关键.
2、C
【分析】
根据增长率的意义,列式即可.
【详解】
设这个增长率为,
根据题意,得,
故选C.
【点睛】
本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.
3、A
【分析】
计算出判别式的值,根据判别式的值即可判断方程的根的情况.
【详解】
∵,,,
∴,
∴方程有有两个不相等的实数根.
故选:A
【点睛】
本题考查了一元二次方程根的判别式,根据判别式的值的情况可以判断方程有无实数根.
4、C
【分析】
先求出方程的解,然后根据三角形三边关系利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长.
【详解】
解:(x﹣3)2=4,
x﹣3=±2,
解得x1=5,x2=1.
若x=5,则三角形的三边分别为4,5,6,其周长为4+5+6=15;
若x=1时,6﹣4=2>1,不能构成三角形,
5、A
【分析】
将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可.
【详解】
解:∵,
∴,
∴,即,
故选A.
【点睛】
本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
6、B
【分析】
根据一元二次方程根的定义将代入方程ax2+bx﹣2=0可得,即,整体代入到代数式中求解即可,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.
【详解】
解:将代入方程ax2+bx﹣2=0可得,即
2021﹣2a+2b=
故选B
【点睛】
本题考查了一元二次方程的解,代数式求值,整体代入是解题的关键.
7、A
【分析】
根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.
【详解】
解:∵一元二次方程的两根分别为m,n,
∴,,
∴,
故选:A.
【点睛】
本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.
8、A
【分析】
方程整理后得出x2+2x﹣1=0,求出Δ=8>0,再根据根的判别式的内容得出答案即可.
【详解】
解:x2+2x=1,
整理得,x2+2x﹣1=0,
∵Δ=22﹣4×1×(﹣1)=8>0,
∴方程有两个不相等的实数根,
故选:A.
【点睛】
本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.
9、A
【分析】
根据题意可直接进行求解.
【详解】
解:由题意可列方程为;
故选A.
【点睛】
本题主要考查一元二次方程的应用,熟练掌握增长率问题是解题的关键.
10、D
【分析】
根据一元二次方程根的判别式解题.
【详解】
解:
所以此方程无解,
故选:D.
【点睛】
本题考查一元二次方程根的判别式,是重要考点,,方程有两个不相等的实数根;方程有两个相等的实数根;方程无解.
二、填空题
1、5(1+x)²=6.8
【分析】
根据2015年及2017年的观赏人数,即可得出关于x的一元二次方程,此题得解.
【详解】
解:由题意得:5(1+x)²=6.8
故答案为:5(1+x)²=6.8
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
2、11
【分析】
先根据一元二次方程根的定义得到2x12=﹣3x1+4,则4x12+4x1﹣2x2化为﹣2(x1+x2)+8,再根据根与系数的关系得到x1+x2=﹣,然后利用整体代入的方法计算.
【详解】
解:∵x1是方程2x2+3x﹣4=0的根,
∴2x12+3x1﹣4=0,
∴2x12=﹣3x1+4,
∴4x12+4x1﹣2x2=2(﹣3x1+4)+4x1﹣2x2=﹣2(x1+x2)+8,
∵x1,x2是方程2x2+3x﹣4=0的两个实数根,
∴x1+x2=﹣ ,
∴4x12+4x1﹣2x2=﹣2(x1+x2)+8=﹣2×(﹣)+8=11.
故答案为:11.
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则,.
3、
【分析】
形如,含有一个未知数,未知数的最高次数是2的方程是一元二次方程,根据定义列不等式或方程,从而可得答案.
【详解】
方程是关于x的一元二次方程,
,
由①得:,
由②得:,
.
故答案为:.
【点睛】
本题考查的是一元二次方程的定义,根据一元二次方程的定义列方程或不等式是解题的关键.
4、
【分析】
将代入方程即可求解.
【详解】
解:关于x的方程的一个根是,
解得
故答案为:
【点睛】
本题考查了一元二次方程的解定义,掌握方程解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.
5、2
【分析】
把四块耕地拼到一起正好构成一个矩形,矩形的长和宽分别是(32-x)m和(20-x)m,根据矩形的面积公式,列出关于道路宽的方程求解.
【详解】
解:设道路的宽是xm,
(32−x)(20−x)=540,
整理得,
因式分解得,
解得:x1=2,x2=50(舍),
答:道路的宽是2m.
故答案为2.
【点睛】
本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.
三、解答题
1、(1)x1=1+2,x2=1﹣2;(2)x1=﹣1+,x2=﹣1﹣.
【分析】
(1)利用直接开平方法求出方程的解即可;
(2)利用配方法求出方程的解即可.
【详解】
解:(1)整理,得2(x﹣1)2=16,
(x﹣1)2=8,
∴x﹣1=,
∴x1=1+2,x2=1﹣2;
(2)整理,得x2+2x=4,
配方,得x2+2x+1=4+1,即(x+1)2=5,
解得:
【点睛】
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
2、(1)①;②;(2)见解析;(3)等边三角形,理由见解析
【分析】
(1)仿照例子运用配方法进行因式分解即可;
(2)利用配方法和非负数的性质进行说明即可;
(3)展开后利用分组分解法因式分解后利用非负数的性质确定三角形的三边的关系即可.
【详解】
解:(1)①
.
②
(2)
∵
∴
∴多项式的值总是一个正数.
(3)为等边三角形.
理由如下:∵
∴
∴
∴,
∴
∴为等边三角形.
【点睛】
本题考查了因式分解的应用,解题的关键是仔细阅读材料理解配方的方法.
3、(1)剪成的两段分别为12cm,28cm;(2)小峰的说法正确,理由见解析
【分析】
(1)设剪成的两段分别为,,然后由题意得,进而问题可求解;
(2)设剪成的两段分别为,,然后由题意得,进而问题可求解.
【详解】
解:设剪成的两段分别为,.
(1)根据题意,得,解得,.
当时,;当时,.
∴剪成的两段分别为12cm,28cm.
(2)根据题意,得,整理,得.
∵,
∴该方程无解,
∴小峰的说法正确.
【点睛】
本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.
4、(1),
(2),
【分析】
(1)直接利用开平方法解一元二次方程即可;
(2)直接利用因式分解法解一元二次方程即可.
(1)
解:∵,
∴,
∴,
∴,;
(2)
解:∵,
∴,
∴,
∴,.
【点睛】
本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.
5、(1);(2)
【分析】
(1)把方程左边分解因式,再化为两个一次方程,再解一次方程即可;
(2)先移项,把方程右边化为0,再把方程左边分解因式,得到两个一次方程,再解一次方程即可.
【详解】
解:(1)
或
解得:
(2)
或
解得:
【点睛】
本题考查的是利用因式分解的方法解一元二次方程,掌握“利用提公因式的方法把方程的左边分解因式,再把原方程化为两个一次方程”是解本题的关键.
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习,共18页。试卷主要包含了用配方法解方程,则方程可变形为,方程的解是等内容,欢迎下载使用。
2021学年第十六章 一元二次方程综合与测试课后测评: 这是一份2021学年第十六章 一元二次方程综合与测试课后测评,共16页。试卷主要包含了下列方程是一元二次方程的是,方程x2﹣8x=5的根的情况是,把方程化成.等内容,欢迎下载使用。
初中第十六章 一元二次方程综合与测试当堂达标检测题: 这是一份初中第十六章 一元二次方程综合与测试当堂达标检测题,共17页。试卷主要包含了下列事件为必然事件的是等内容,欢迎下载使用。