数学八年级下册第十六章 一元二次方程综合与测试随堂练习题
展开
这是一份数学八年级下册第十六章 一元二次方程综合与测试随堂练习题,共17页。试卷主要包含了把方程化成.等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程中是一元二次方程的是( )A.2x+1=0 B.y2+x=1 C.x2+1=0 D.2、下列方程中一定是一元二次方程的是( )A.x2﹣4=0 B.ax2+bx+c=0 C.x2﹣y+1=0 D.+x﹣1=03、用配方法解一元二次方程x2﹣10x+21=0,下列变形正确的是( )A.(x﹣5)2=4 B.(x+5)2=4 C.(x﹣5)2=121 D.(x+5)2=1214、一个三角形两边的长分别等于一元二次方程的两个实数根,则这个三角形的第三条边不可能为( )A.7 B.11 C.15 D.195、用配方法解方程x2+4x=1,变形后结果正确的是( )A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=26、关于x的一元二次方程x2-mx+(m-2)=0的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.根据m的取值范围确定7、把方程化成(a,b为常数)的形式,a,b的值分别是( ).A.2,7 B.2,5 C.,7 D.,58、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )A. B.C. D.9、某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有( )支队伍参赛.A.4 B.5 C.6 D.710、一个矩形的长是宽的3倍,若把它的长、宽分别加1后,面积增加了9,求原矩形的长与宽.若设原矩形的宽为,可列方程为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x,y的方程组有唯一解,则k的值是 _____.2、已知,那么的值是______.3、若,则关于的一元二次方程必有一个根为______.4、小华在解方程x2 = 3x时,只得出一个根x = 3,则被他漏掉的一个根是x =_______ 5、已知实数a,b满足条件a2﹣7a+2=0,b2﹣7b+2=0(a≠b),则a+b=_____.三、解答题(5小题,每小题10分,共计50分)1、解方程:.2、在实数范围内定义一种运算“*”,其运算法则为.如:.根据这个法则,(1)计算:________;(2)判断是否为一元二次方程,并求解.(3)判断方程的根是否为,,并说明理由.3、用适当的方法解下列方程:(1)(x﹣1)2=9;(2)x2+4x﹣1=0.(3)3(x﹣5)2=4(5﹣x).(4)x2﹣4x+10=0.4、某市为鼓励居民节约用水,对居民用水实行阶梯收费,每户居民用水量每月不超过a吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费.(1)若a=12,某户居民3月份用水量为22吨,则该用户应缴纳水费多少元?(2)若如表是某户居民4月份和5月份的用水量和缴费情况:月份用水量(吨)交水费总金额(元)4186252486根据上表数据,求规定用水量a的值5、解方程:(1)x2+4x﹣1=0 (2)x(x-2)+x-2=0 -参考答案-一、单选题1、C【详解】解:A、未知数次数是1,不是一元二次方程,故本选项不符合题意;B、含有2个未知数,不是一元二次方程,故本选项不符合题意;C、是一元二次方程,故本选项符合题意;D、分母中含有未知数,不是一元二次方程,故本选项不符合题意;故选:C【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有1个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.2、A【分析】利用一元二次方程定义进行解答即可.【详解】解:A、是一元二次方程,故此选项符合题意;B、当a=0时,不是一元二次方程,故此选项不合题意;C、含有两个未知数,不是一元二次方程,故此选项不合题意;D、未知数次数为1,不是一元二次方程,故此选项不合题意;故选:A.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.3、A【分析】利用配方法,方程的两边同时加上一次项系数一半的平方,即可求解.【详解】解:x2﹣10x+21=0,移项得: ,方程两边同时加上25,得: ,即 .故选:A【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握利用配方法,需要方程的两边同时加上一次项系数一半的平方是解题的关键.4、D【分析】先根据一元二次方程的解法得到这个三角形的两边长,然后再利用三角形三边关系可排除选项.【详解】解:,解得:,∴这个三角形的两边的长为6和11,∴第三边长x的范围为5<x<17;故选D.【点睛】本题主要考查一元二次方程的解法及三角形三边关系,熟练掌握一元二次方程的解法及三角形三边关系是解题的关键.5、A【分析】方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.【详解】解:x2+4x=1即故选A【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.6、A【分析】根据根的判别式判断即可.【详解】∵,∴方程有两个不相等的实数根.故选:A.【点睛】本题考查一元二次方程根的判别式,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记判别式并灵活应用是解题关键.7、C【分析】利用配方法将一元二次方程进行化简变形即可得.【详解】解:,,,,∴,,故选:C.【点睛】题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键.8、C【分析】根据增长率的意义,列式即可.【详解】设这个增长率为,根据题意,得,故选C.【点睛】本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.9、C【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:球队的个数×(球队的个数1)=30,把相关数值代入计算即可.【详解】解:有x个球队参加比赛,根据题意可列方程为:x(x1)=30,解得:或(舍去);∴共有6支队伍参赛;故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.10、C【分析】分别用表示出长宽增加前后的矩形面积,然后作差即可得到所求方程.【详解】解:由题意可知,长宽增加前的矩形面积为:,长宽增加后的矩形面积为:,根据已知条件可得方程:,故选:C.【点睛】本题主要是考查了一元二次方程的实际应用,熟练利用表示出对应图形的面积,这是解决与面积相关的应用题的关键.二、填空题1、-1或3或-1【分析】把①代入②,得到关于x的一元二次方程,根据判别式为0时方程有两个相等的实根,列出方程求出k即可.【详解】解: 把①代入②得,kx-1=x2+x,整理得,x2+(1-k)x+1=0使方程有唯一解,判别式为0,(1-k)2-4=0,解得k1=-1,k2=3.故答案为:-1或3【点睛】本题考查的是二元二次方程的解的判断,步骤是把方程组通过代入法化为一元二次方程,然后根据一元二次方程根的判别式进行判断.2、-5【分析】先利用配方法把所求的代数式配方,然后代值计算即可.【详解】解:∵,∴ ,故答案为:-5.【点睛】本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法.3、【分析】由a﹣b+c=0可得b=a+c,然后将b=a+c带入方程,最后用因式分解法解一元二次方程即可.【详解】解:∵a﹣b+c=0,∴b=a+c,①把①代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,∴x1=﹣1,x2=﹣(非零实数a、b、c).故答案是:-1.【点睛】本题主要考查了解一元二次方程,灵活运用因式分解法解一元二次方程成为解答本题的关键.4、0【分析】根据因式分解法即可求出答案.【详解】解:∵x2=3x,
∴x2-3x=0,
∴,
∴x=0或x-3=0,
∴x1=0,x2=3,
故答案为:0.【点睛】本题考查解一元二次方程,解题的关键是熟练运用因式分解法.5、7【分析】利用一元二次的求根公式可得答案.【详解】解:由实数a,b分别满足a2-7a+2=0,b2-7b+2=0,可得a,b分别是方程x2-7x+2=0的两个不等实数根,由根与系数的关系可得a+b=7,故答案为:7.【点睛】本题考查了根与系数的关系,属于基础题,关键是把a,b看成方程的两个根后再根据根与系数的关系解题.三、解答题1、x1=1,x2=3【分析】利用因式分解法,令两个一次因式都等于0,进而得出结果.【详解】解:或解得或或【点睛】本题考察了一元二次方程的求解.解题的关键与难点在于对多项式进行因式分解.2、(1)(2)是一元二次方程,(3)不是,理由见解析【分析】(1)根据直接代入求值即可;(2)根据新定义,将方程化简,进而解一元二次方程即可;(3)方法同(2)解一元二次方程,进而判断方程的根即可(1)故答案为:(2)是一元二次方程解得:(3)的根不是,,则,即【点睛】本题考查了新定义运算,代数式求值,解一元二次方程,一元二次方程的定义,掌握解一元二次方程的方法是解题的关键.一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.3、(1)x1=4,x2=﹣2(2)(3)(4)【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可.(3)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(4)先判断是否有解,若有解,可直接利用公式法求解即可.(1)解:(x﹣1)2=9,∴x﹣1=3或x﹣1=﹣3,∴x1=4,x2=﹣2.(2)解:x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,即(x+2)2=5,∴x+2=或x+2=﹣,∴x1=﹣2+,x2=﹣2﹣.(3)解:∵3(x﹣5)2=4(5﹣x),∴3(x﹣5)2+4(x﹣5)=0,∴(x﹣5)(3x﹣11)=0,则x﹣5=0或3x﹣11=0,解得x1=5,x2=.(4)解:∵a=1,b=﹣4,c=10,∴Δ=(﹣4)2﹣4×1×10=8>0,∴x===2±,∴,.【点睛】本题考查了一元二次方程的解法,要根据不同的方程采取不同的方法,解题时要先判断方程是否有根.4、(1) ;(2)10【分析】(1)根据题意得:该用户3月份用水量超过a吨,然后根据“用水量每月不超过a吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费”,即可求解;(2)若 ,可得 ,从而得到 ,再由“用水量每月不超过a吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费”,列出方程,即可求解.【详解】解:(1)根据题意得:该用户3月份用水量超过a吨, 元;(2)若 ,有 ,解得: ,即 ,不合题意,舍去,∴ ,根据题意得: ,解得: (舍去),答:规定用水量a的值为10吨.【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.5、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=2,x2=-1【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.【详解】解:(1)∵x2+4x﹣1=0,∴a=1,b=4,c=﹣1,∵△=16+4=20,∴x=,∴,;(2)x(x-2)+x-2=0,因式分解得:(x﹣2)(x+1)=0,可得x﹣2=0或x+1=0,解得:x1=2,x2=﹣1.【点睛】本题主要考查了一元二次方程的求解,掌握解一元二次方程的方法与步骤,准确利用公式法和因式分解法解方程是关键.
相关试卷
这是一份数学八年级下册第十六章 一元二次方程综合与测试随堂练习题,共17页。试卷主要包含了若方程的一个根为,则的值是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共16页。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共16页。试卷主要包含了方程x2=4x的解是等内容,欢迎下载使用。