搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新京改版八年级数学下册第十六章一元二次方程章节测试练习题

    2021-2022学年最新京改版八年级数学下册第十六章一元二次方程章节测试练习题第1页
    2021-2022学年最新京改版八年级数学下册第十六章一元二次方程章节测试练习题第2页
    2021-2022学年最新京改版八年级数学下册第十六章一元二次方程章节测试练习题第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习

    展开

    这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共17页。试卷主要包含了关于x的一元二次方程,下列事件为必然事件的是,一元二次方程x2=-2x的解是等内容,欢迎下载使用。
    京改版八年级数学下册第十六章一元二次方程章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解方程x2+4x=1,变形后结果正确的是(    A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=22、参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为(    A. B.C. D.3、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为(    A. B. C. D.4、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为(   A.x1=0,x2=-3 B.x1=-1,x2=-4C.x1=0,x2=3 D.x1=2,x2=-15、关于x的一元二次方程(a-1)x2xa2-1=0的一个根是0,则a的值为(  )A.1 B.-1 C.1或-1 D.06、解一元二次方程x2-6x-4=0,配方后正确的是(    A.(x+3)2=13 B.(x-3)2=5 C.(x-3)2=4 D.(x-3)2=137、下列一元二次方程中,有一个根为0的方程是(  )A.x2﹣4=0 B.x2﹣4x=0 C.x2﹣4x+4=0 D.x2﹣4x﹣4=08、下列事件为必然事件的是(  )A.抛掷一枚硬币,正面向上B.在一个装有5只红球的袋子中摸出一个白球C.方程x2﹣2x=0有两个不相等的实数根D.如果|a|=|b|,那么ab9、一元二次方程x2=-2x的解是(      A.x1x2=0 B.x1x2=2 C.x1=0,x2=2 D.x1=0,x2=-210、下表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为(    x﹣2.1﹣2.2﹣2.3﹣2.4y﹣1.39﹣0.76﹣0.110.56A.x≈﹣2.15 B.x≈﹣2.21 C.x≈﹣2.32 D.x≈﹣2.41第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、小华在解一元二次方程x2=6x时,只得出一个根是x=6,则被他漏掉的一个根是x=______.2、已知关于x的一元二次方程2x2﹣4x+k=0有两个不相等的实数根,则k的取值范围是 _____.3、已知关于x的一元二次方程(a﹣1)x2﹣2xa2﹣1=0有一个根为x=0,则a=___.4、甲公司前年缴税100万元,今年缴税121万元,则该公司缴税的年平均增长率 _____.5、已知,那么的值是______.三、解答题(5小题,每小题10分,共计50分)1、2021年某市轨道交通1号线经过10月份的试运营,于11月正式开通运营.10月份客运量为120万人次,12月份客运量为172.8万人次(1)求1号线客运量的月平均增长率;(2)按照客运量这样的月增长率,预计1号线在2022年1月份的客运量能否突破200万人次.2、国家鼓励大学生自主创业,并有相关的支持政策,受益于支持政策的影响,某大学生自主创立的公司利润逐年提高,据统计,2017年利润为200万元,2019年利润为288万元,求该公司从2017年到2019年利润的年平均增长率.3、解方程:(1)x2﹣4x﹣1=0;(2)x2x﹣12=0.4、为了让我们的小朋友们有更好的学习环境,我校2020年投资110万元改造硬件设施,计划以后每年以相同的增长率进行投资,到2022年投资额将达到185.9万元.(1)求我校改造硬件设施投资额的年平均增长率;(2)从2020年到2022年,这三年我校将总共投资多少万元?5、解下列方程:(1)(2) -参考答案-一、单选题1、A【分析】方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.【详解】解:x2+4x=1故选A【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.2、A【分析】设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此列出方程即可.【详解】解:设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此可得:故选:A.【点睛】题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.3、B【分析】先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值.【详解】解:根据题意,∵解得:故选:B【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.4、D【分析】首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,然后代入一元二次方程ax2-bx+c=3中即可求解.【详解】解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,∴一元二次方程ax2+bx+c=3有一个根为1,∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即解得:故选:D.【点睛】此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.5、B【分析】根据一元二次方程的定义和一元二次方程的解的定义得出a-1≠0,a2-1=0,求出a的值即可.【详解】解:根据题意将x=0代入方程可得:a2-1=0,解得:a=1或a=-1,a-1≠0,即a≠1,a=-1,故选:B.【点睛】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a-1≠0且a2-1=0,题目比较好,但是一道比较容易出错的题.6、D【分析】根据配方法即可求出答案.【详解】解:∵x2﹣6x﹣4=0,x2﹣6x=4,x2﹣6x+9=13,∴(x﹣3)2=13,故选D.【点睛】本题考查了配方法解方程,注意配方时先把常数项移到右边,然后把二次项系数化为1,最后等号两面同时加上一次项系数一半的平方.7、B【分析】根据方程根的定义,将x=0代入方程使得左右两边相等的即可确定正确的选项.【详解】解:A.当x=0时,02﹣4=﹣4≠0,故错误,不符合题意;B.当x=0时,02﹣0=0,故正确,符合题意;C.当x=0时,02﹣0+4=4≠0,故错误,不符合题意;D.当x=0时,02﹣0﹣4=﹣4≠0,故错误,不符合题意.故选:B【点睛】本题考查了一元二次方程方程解的定义,熟知方程的解的定义是解题关键,注意一元二次方程的解又叫做一元二次方程的根.8、C【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,叫做必然事件,进行逐一判断即可【详解】解:A、抛掷一枚硬币,可能正面向上,也有可能反面向上,不是必然事件,不符合题意;B、在一个装有5只红球的袋子中摸出一个白球是不可能发生的,不是必然事件,不符合题意;C、∵,∴方程x2﹣2x=0有两个不相等的实数根,是必然事件,符合题意;D、如果|a|=|b|,那么aba=-b,不是必然事件,不符合题意;故选C.【点睛】本题主要考查了必然事件的定义,熟知定义是解题的关键.9、D【分析】先移项、然后再利用因式分解法解方程即可.【详解】解 :x2=-2xx2+2x=0xx+2)=0,x=0或x+2=0,所以x1=0,x2=-2.故选:D.【点睛】本题考查了解一元二次方程−因式分解法,把解一元二次方程的问题转化为解一元一次方程的问题成为解答本题的关键.10、C【分析】根据表可得,方程2x2﹣2x﹣10=0的一个解应在﹣2.3与﹣2.4之间,再由y的值可得,它的根近似的看作是﹣2.3.【详解】∵当x=﹣2.3时,y=﹣0.11,x=﹣2.4时,y=0.56,则方程的根﹣2.3<x<﹣2.4,∵|﹣0.11|<|0.56|,∴方程2x2﹣2x﹣10=0的一个近似解为x≈﹣2.32.故选:C.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是看y值的变化.二、填空题1、0【分析】由因式分解法解一元二次方程步骤因式分解即可求出.【详解】原式为x2=6x移项得x2-6x=0化积为xx-6)=0转化得x=0,x-6=0解得x=0,x=6故答案为:0.【点睛】因式分解法解一元二次方程的一般步骤:移项→将方程的右边化为零;化积→把方程的左边分解为两个一次因式的积; 转化→令每个因式分别为零,转化成两个一元一次方程;求解→解这两个一元一次方程,它们的解就是原方程的解.2、【分析】根据方程的系数结合根的判别式Δ>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】解:∵关于x的一元二次方程2x2﹣4x+k=0有两个不相等的实数根,∴Δ=(﹣4)2﹣4×2×(k)>0,解得:故答案为:【点睛】本题考查了一元二次方程根的判别式,掌握一元二次方程根的判别式的符号对应的三种根的情况是解题的关键.(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.3、−1【分析】根据一元二次方程的解把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值.【详解】解:把x=0代入(a−1)x2−2xa2−1=0得a2−1=0,解得a=±1,
    a−1≠0,
    a=−1.
    故答案为:−1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.4、10%【分析】设公司缴税的年平均增长率为x,根据增长后的纳税额=增长前的纳税额×(1+增长率),即可得到去年的纳税额是100(1+x)万元,今年的纳税额是100(1+x2万元,据此即可列出方程求解.【详解】解:设该公司缴税的年平均增长率为x,依题意得100(1+x2=121解方程得x1=0.1=10%,x2=﹣2.1(舍去)所以该公司缴税的年平均增长率为10%.故答案为:10%.【点睛】本题考查了一元二次方程的实际应用---增长率问题,认真审题找到等量关系是是解题的关键.5、-5【分析】先利用配方法把所求的代数式配方,然后代值计算即可.【详解】解:∵ 故答案为:-5.【点睛】本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法.三、解答题1、(1)1号线客运量的月平均增长率为20%;(2)预计1号线在2022年1月份的客运量能突破200万人次.【分析】(1)设1号线客运量的月平均增长率为x,列出,求解即可;(2)按照客运量这样的月增长率,在2022年1月份的客运量为,计算出结果比较即可.【详解】解:(1)设1号线客运量的月平均增长率为x,则解得舍去)(2)按照客运量这样的月增长率,1号线在2022年1月份的客运量为,(万人次)(万人次)答:(1)1号线客运量的月平均增长率为20%.(2)预计1号线在2022年1月份的客运量能突破200万人次.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题意列出相应的等式.2、该公司从2017年到2019年利润的年平均增长率为20%【分析】设该公司从2017年到2019年利润的年平均增长率为x,然后根据2017年利润为200万元,2019年利润为288万元,列出方程求解即可.【详解】解:设该公司从2017年到2019年利润的年平均增长率为x由题意得:解得∴该公司从2017年到2019年利润的年平均增长率为20%,答:该公司从2017年到2019年利润的年平均增长率为20%.【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够根据题意列出方程求解.3、(1);(2)【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】解:(1)∵(2)∵【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.4、(1)我校改造硬件设施投资额的年平均增长率为30%;(2)从2020年到2022年,这三年我校将总共投资438.9万元【分析】(1)设我校改造硬件设施投资额的年平均增长率为x,利用2022年投资额=2020年投资额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用这三年我校总共投资的金额=2020年投资额+2020年投资额×(1+年平均增长率)+2022年投资额,即可求出结论.【详解】解:(1)设我校改造硬件设施投资额的年平均增长率为x依题意得:110(1+x2=185.9,解得:x1=0.3=30%,x2=﹣2.3(不合题意,舍去).答:我校改造硬件设施投资额的年平均增长率为30%.(2)110+110×(1+30%)+185.9=110+143+185.9=438.9(万元).答:从2020年到2022年,这三年我校将总共投资438.9万元【点睛】本题考查了一元二次方程的应用以及有理数的混合运算,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,列式计算.5、(1);(2)【分析】(1)直接根据因式分解法解一元二次方程即可;(2)先将方程化为一般形式,进而根据因式分解法解一元二次方程即可.【详解】解:(1)解得(2)解得【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 

    相关试卷

    北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题:

    这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共17页。

    北京课改版八年级下册第十六章 一元二次方程综合与测试测试题:

    这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试测试题,共16页。试卷主要包含了若a是方程的一个根,则的值为等内容,欢迎下载使用。

    北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习:

    这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共16页。试卷主要包含了一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map