初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步训练题
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步训练题,共16页。试卷主要包含了一元二次方程x2=-2x的解是,下列方程中是一元二次方程的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A.128(1 - x2)= 88 B.88(1 + x)2 = 128C.128(1 - 2x)= 88 D.128(1 - x)2 = 882、把方程化成(a,b为常数)的形式,a,b的值分别是( ).A.2,7 B.2,5 C.,7 D.,53、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为( )A. B. C. D.4、一元二次方程x2=-2x的解是( )A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=-25、若一元二次方程x25x+k =0的一根为2,则另一个根为( )A.3 B.4 C.5 D.66、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m-n的值是( )A.-10 B.10 C.-6 D.67、如图,在一块长为30m,宽为20m的矩形地面上,要修建同样宽的两条互相垂直的道路,剩余部分种上草坪,使草坪面积为300m2,若设道路宽为xm,则根据题意可列方程为( )
A. B.C. D.8、某商品售价准备进行两次下调,如果每次降价的百分率都是x,经过两次降价后售价由298元降到了268元,根据题意可列方程为( ).A. B.C. D.9、下列方程中是一元二次方程的是( )A.y+2=1 B.=0 C. D.10、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、代数式的最小值是_______.2、若方程是关于的一元二次方程,则__________.3、关于x的一元二次方程的两实数根,,满足,则m的值是______.4、已知的算术平方根为a,则关于x的方程的根为____________.5、已知实数a是一元二次方程x2﹣2016x+1=0的根,求代数式a2﹣2015a﹣的值为_____.三、解答题(5小题,每小题10分,共计50分)1、解方程:3x2﹣1=4x.2、已知关于x的一元二次方程有两个实数根,.(1)若,求k的值.(2)若,,求k的取值范围.3、2021年12月9日,在神州十三号载人飞船上,翟志刚、王亚平、叶光富三位航天员为广大青少年开讲“天宫课堂”第一课,这是中国空间站首次太空授课活动.在此期间,我校“对话太空”兴趣小组举行了航天科普知识有奖竞答活动,并购买“神州载人飞船”模型作为奖品,学校在商店里了解到:如果一次性购买数量不超过10个,每个模型的单价为40元;如果一次性购买数量超过10个,每多购买一个,每个模型的单价均降低0.5元,但每个模型最低单价不低于30元,若学校为购买“神州载人飞船”模型一次性付给商店900元,请求出学校购买“神州载人飞船”模型的数量.4、已知关于x的一元二次方程有两个不相等的实数根.(1)求a的取值范围;(2)若a为正整数,求方程的根.5、已知关于的一元二次方程.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于,求的取值范围. -参考答案-一、单选题1、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意得:128(1-x)2=88.
故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2、C【分析】利用配方法将一元二次方程进行化简变形即可得.【详解】解:,,,,∴,,故选:C.【点睛】题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键.3、B【分析】先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值.【详解】解:根据题意,∵,∴,∴,∴;∵,解得:,,∵,∴,∴;故选:B【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.4、D【分析】先移项、然后再利用因式分解法解方程即可.【详解】解 :x2=-2xx2+2x=0x(x+2)=0,x=0或x+2=0,所以x1=0,x2=-2.故选:D.【点睛】本题考查了解一元二次方程−因式分解法,把解一元二次方程的问题转化为解一元一次方程的问题成为解答本题的关键.5、A【分析】设方程的另一根为t,根据根与系数的关系得到2+t=5,求出t即可.【详解】解:设方程的另一根为t,根据题意得2+t=5,解得t=3.故选A.【点睛】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=,x1·x2=.6、D【分析】根据一元二次方程x2+mx+n=0的两个实数根分别为x1=2、x2=4结合根与系数的关系,分别求出m和n的值,最后代入m-n即可解答.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2、x2=4,∴x1+x2=﹣m=-2+4,解得:m=﹣2,x1•x2=n=-2×4,解得:n=-8,∴m-n=﹣2-(-8)=6.故选D.【点睛】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系求出m、n的值是解答本题的关键.7、B【分析】根据题意草坪的长为m,宽为m,根据长方形的面积公式列出一元二次方程即可【详解】解:设道路宽为xm,则根据题意可列方程为故选B【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.8、D【分析】根据该商品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意得:298(1-x)2=268.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9、B【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,据此解答即可.【详解】解:A.是二元二次方程,故本选项不合题意; B.是一元二次方程,故本选项符合题意;C.是二元二次方程,故本选项不合题意;D.当a=0时,不含二次项,故本选项不合题意;故选:B.【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.10、C【分析】设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.【详解】解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,依题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.二、填空题1、【分析】利用配方法得到:.利用非负数的性质作答.【详解】解:因为≥0,所以当x=1时,代数式的最小值是,故答案是:.【点睛】本题主要考查了配方法的应用,非负数的性质.配方法的理论依据是公式a2±2ab+b2=(a±b)2.2、【分析】形如,含有一个未知数,未知数的最高次数是2的方程是一元二次方程,根据定义列不等式或方程,从而可得答案.【详解】方程是关于x的一元二次方程,,由①得:,由②得:,.故答案为:.【点睛】本题考查的是一元二次方程的定义,根据一元二次方程的定义列方程或不等式是解题的关键.3、2【分析】先根据根的判别式求得m的取值范围,然后根据一元二次方程根与系数的关系得到x1x2=m2−m=2,进而求得m=2或m=−1,故可得解.【详解】解:由题意得Δ=(2m)2−4(m2−m)≥0,∴m≥0,∵关于x的一元二次方程的两实数根,,则x1x2=m2−m=2,∴m2−m−2=0,解得m=2或m=−1(舍去),故答案为:2.【点睛】本题考查的是解一元二次方程和一元二次方程根与系数的关系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1x2=.4、x1=5,x2=1.【分析】先根据算术平方根求出a的值,在代入解一元二次方程即可.【详解】解:∵=9,9的算术平方根是3,∴a=3,∴关于x的方程(x-a)2=4变为(x-3)2=4∴x-3=±2解得x1=5,x2=1.故答案为:x1=5,x2=1.【点睛】本题考查了算术平方根的求法和一元二次方程的解法,做题的关键是求出a的值.5、【分析】利用方程解的定义得到,然后利用整体代入的方法计算代数式的值.【详解】解:是方程的根,,,原式.故答案是:.【点睛】本题主要考查了一元二次方程的解的定义,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.三、解答题1、【分析】对原方程进行移项,找出a、b、c的值,根据求根公式即可得出方程的解.【详解】解:原方程移项得:,∴,,,∴,∴,∴,.【点睛】题目主要考查解一元二次方程的方程:公式法,熟练掌握求根公式是解题关键.2、(1)或;(2)【分析】(1)根据方程的特点,因式分解法解方程,进而求得的值;(2)根据方程的解,以及,,即可求得k的取值范围.【详解】解:有实根(1)即解得即或解得或(2)若,,则解得【点睛】本题考查了解一元二次方程,求得方程的解是解题的关键.3、30个.【分析】设学校一次性购买这种“神州载人飞船”模型x个,然后找出等量关系,列出方程,解方程即可求出答案.【详解】解:根据题意,设学校一次性购买这种“神州载人飞船”模型x个,则实际销售单价为:400.5×(x10)=450.5x(元);∵,∴;∴,解得:或(舍去);∴学校购买30个“神州载人飞船”模型的数量.【点睛】本题考查了一元二次方程的应用,解题的关键是设出“神州载人飞船”模型的个数并表示出销售单价.4、(1)a<;(2)【分析】(1)根据方程的系数结合根的判别式Δ=b2-4ac>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围;
(2)由(1)的结论结合a为正整数,即可得出a=1,将其代入原方程,再利用公式法解一元二次方程,即可求出原方程的解.【详解】解:(1)∵关于的一元二次方程有两个不相等的实数根,∴>0,解得a<,∴的取值范围为a<.(2)∵a<,且a为正整数,∴,代入,此时,方程为.∴解得方程的根为【点睛】本题考查了根的判别式以及公式法解一元二次方程,解题的关键是:(1)牢记“当Δ>0时,方程有两个不相等的实数根”;(2)利用因式分解法求出方程的两个根.5、(1)见详解;(2)k<-4【分析】(1)根据方程的系数结合根的判别式,可得Δ≥0,由此可证出方程总有两个实数根;
(2)利用分解因式法解一元二次方程,可得出x1=2、x2= k+3,根据方程有一根小于-1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】(1)证明:∵在方程中,Δ=[-(k+5)]2-4×1×(6+2k)=k2+2k+1=(k+1)2≥0,
∴方程总有两个实数根.
(2)解:∵,
∴x1=2,x2=k+3.
∵此方程恰有一个根小于,
∴k+3<-1,解得:k<-4,
∴k的取值范围为k<-4.【点睛】本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于-1,找出关于k的一元一次不等式.
相关试卷
这是一份数学北京课改版第十六章 一元二次方程综合与测试习题,共14页。试卷主要包含了方程x2﹣8x=5的根的情况是,方程x2=4x的解是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共17页。试卷主要包含了用配方法解方程,则方程可变形为,股市规定等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时训练,共22页。试卷主要包含了不解方程,判别方程的根的情况是,一元二次方程的解是.等内容,欢迎下载使用。