数学第十六章 一元二次方程综合与测试精练
展开
这是一份数学第十六章 一元二次方程综合与测试精练,共20页。试卷主要包含了小亮,一元二次方程的解为,一元二次方程的解是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把方程化成(a,b为常数)的形式,a,b的值分别是( ).A.2,7 B.2,5 C.,7 D.,52、用配方法解方程x2-4x-3=0时,配方后的方程为( )A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=7 D.(x-2)2=73、下列方程中,是关于x的一元二次方程是( )A. B. C. D.4、小亮、小明、小刚三名同学中,小亮的年龄比小明的年龄小2岁,小刚的年龄比小明的年龄大1岁,并且小亮与小刚的年龄的乘积是130.你知道这三名同学的年龄各是多少岁吗?设小明的年龄为x岁,则可列方程为( )A. B.C. D.5、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )A. B.C. D.6、南宋著名数学家杨辉所著的《杨辉算法》中记载:“直田积八百六十四步,只云长阔共六十步,问长阔各几何?”意思是“一块矩形田地的面积是864平方步,只知道它的长与宽的和是60步,问它的长和宽各是多少步?”设矩形田地的长为步,根据题意可以列方程为( )A. B. C. D.7、下列一元二次方程两实数根和为-4的是( )A. B.C. D.8、一元二次方程的解为( )A., B., C., D.,9、一元二次方程的解是( )A. B.C., D.10、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下面是用配方法解关于的一元二次方程的具体过程,解:第一步:第二步:第三步:第四步:,以下四条语句与上面四步对应:“①移项:方程左边为二次项和一次项,右边为常数项;②求解:用直接开方法解一元二次方程;③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;④二次项系数化1,方程两边都除以二次项系数”,则第一步,第二步,第三步,第四步应对应的语句分别是________.2、关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为__.3、一元二次方程的二次项系数、一次项系数及常数项之和为 ______.4、已知中,,,,则的面积是________.5、某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形中,点分别在边、上,与相交于点G,且.(1)如图1,求证:;(2)如图2,与是方程的两个根,四边形的面积为,求正方形的面积.(3)在第(2)题的条件下,如图3,延长BC至点N,使得CN=3,连接GN交CD于点M,直接写出线段的值.2、解下列方程:(1); (2).3、宜宾市某楼盘准备以每平方米9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米7290元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?4、(1)计算:(2)计算:(3)解方程:(4)解方程:5、阅读材料:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2,x1*x2.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1,所以.根据上述材料解决以下问题:(1)材料理解:一元二次方程5x2+10x﹣1=0的两个根为x1,x2,则x1+x2= ,x1x2= .(2)类比探究:已知实数m,n满足7m2﹣7m﹣1=0,7n2﹣7n﹣1=0,且m≠n,求m2n+mn2的值: -参考答案-一、单选题1、C【分析】利用配方法将一元二次方程进行化简变形即可得.【详解】解:,,,,∴,,故选:C.【点睛】题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键.2、D【分析】根据配方法转化为的形式,问题得解.【详解】解:x2-4x-3=0,移项得,配方得,∴.故选:D【点睛】本题考查了配方法解一元二次方程,熟知配方法的步骤并准确配方(在二次项系数为1时,方程两边同时加上一次项系数一半的平方)是解题的关键.3、C【分析】根据只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程选择即可.【详解】A.当a=0时,是一元一次方程,该选项不符合题意;B.分母上有未知数,是分式方程,该选项不符合题意;C.是关于x的一元二次方程,该选项符合题意;D.经整理后为,是一元一次方程,该选项不符合题意.故选择C.【点睛】本题考查识别一元二次方程,理解一元二次方程的定义是解答本题的关键.4、B【分析】设小明的年龄为x岁,则可用x表示出小亮的年龄和小刚的年龄.再根据小亮与小刚的年龄的乘积是130,即可列出方程.【详解】设小明的年龄为x岁,则小亮的年龄为岁,小刚的年龄为岁,根据题意即可列方程:.故选:B.【点睛】本题考查一元二次方程的实际应用.理解题意,正确找出题干中的数量关系列出等式是解答本题的关键.5、C【分析】设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可.【详解】解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,由题意得:,故选C.【点睛】本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键.6、C【分析】设长为x步,则宽为(60-x)步,根据矩形田地的面积为864平方步,即可得出关于x的一元二次方程,此题得解.【详解】设长为x步,则宽为(60-x)步,
依题意得:x(60-x)=864,整理得:.
故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7、D【分析】根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可【详解】解:A. ,,,不符合题意;B. ,,该方程无实根,不符合题意;C. ,,该方程无实根,不符合题意;D. ,,该方程有实根,且,符合题意;故选D【点睛】本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键.8、A【分析】根据因式分解法即可求解.【详解】∴x-1=0或x-3=0∴,故选A.【点睛】此题主要考查解一元二次方程的求解,解题的关键是熟知因式分解法的运用.9、C【分析】根据因式分解法解一元二次方程即可.【详解】解:即或解得,故选C【点睛】本题考查了因式分解法解一元二次方程,掌握解一元二次方程的方法是解题的关键.10、C【分析】根据增长率的意义,列式即可.【详解】设这个增长率为,根据题意,得,故选C.【点睛】本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.二、填空题1、④①③②【分析】根据配方法的步骤:二次项系数化为1,移项,配方,求解,进行求解即可.【详解】解:根据配方法的步骤可知:第一步为:④二次项系数化1,方程两边都除以二次项系数;第二步为:①移项:方程左边为二次项和一次项,右边为常数项;第三步为:③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;第四步为:②求解:用直接开方法解一元二次方程;故答案为:④①③②.【点睛】本题主要考查了配方法解一元二次方程,熟知配方法的步骤是解题的关键.2、3【分析】把x=2代入方程x2+bx﹣10=0得关于b的方程,然后解方程即可.【详解】解:∵关于x的一元二次方程x2+bx﹣10=0的一个根为2,∴把x=2代入方程x2+bx﹣10=0得4+2b﹣10=0,解得b=3.故答案为:3.【点睛】本题考查了一元二次方程的解和解一元一次方程。解题的关键在于能够熟知一元二次方程解得定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3、6
【分析】确定二次项系数,一次项系数,常数项以后即可求解.【详解】根据题意可得,一元二次方程的二次项系数为1,一次项系数为4,常数项为1;∴和为.故答案为:6.【点睛】本题考查了一元二次方程的一般形式,利用二次项系数、一次项系数、常数项之和算出算式是解题关键.4、或【分析】如图所示,过点C作CE⊥AB于E,先根据含30度角的直角三角形的性质和勾股定理求出,设,则,,由,得到,由此求解即可.【详解】解:如图所示,过点C作CE⊥AB于E,∴∠CEB=∠CEA=90°,∵∠ABC=60°,∴∠BCE=30°,∴BC=2BE,∴,设,则,,∵,∴,解得或,∴或,∴或,故答案为:或.【点睛】本题主要考查了勾股定理和含30度角的直角三角形的性质,解一元二次方程,解题的关键在于能够熟练掌握含30度角的直角三角形的性质.5、【分析】先设增长率为x,那么第四季度的营业额可表示为200(1+x)2,已知第四季度营业额为288万元,即可列出方程,从而求解.【详解】解:设每季度的平均增长率为x,根据题意得:200(1+x)2=288,解得:x=﹣2.2(不合题意舍去),x=0.2,则每季度的平均增长率是20%.故答案为:20%【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.三、解答题1、(1)见解析;(2)16;(3)【分析】(1)由正方形ABCD得,由得,从而得出即可得证;(2)由ASA证明,从而得出,设,,则,即,由根与系数的关系求出k,即可得出;(3)过点G作PQ⊥AD于点P,交BC于Q,则GQ⊥BC,由(2)可知,,,,由等面积法求出PG,由勾股定理求出AP,故可得QG、QN,由勾股定理即可求出答案.【详解】(1)∵四边形ABCD是正方形,∴,∵,∴,∴,∴;(2)∵四边形ABCD是正方形,∴,在与中,,,∴,设,,则,即,∵与是方程的两个根,∴,∴,解得:,,∴,∴,∴一元二次方程为,;(3)如图,过点G作PQ⊥AD于点P,交BC于Q,则GQ⊥BC,由(2)可知,,,,,,则,,,∴,.【点睛】本题考查正方形的性质,全等三角形的判定与性质,一元二次方程根与系数的关系以及勾股定理,掌握知识点间的相互应用是解题的关键.2、(1),;(2)【分析】(1)先求解 再利用求根公式解方程即可;(2)先移项,把方程的右边化为0,再把方程的左边分解因式,化为两个一次方程,再解一次方程即可.【详解】解:(1) 即 (2) 或 解得:【点睛】本题考查的是公式法,因式分解法解一元二次方程,掌握“一元二次方程的求根公式”是解本题的关键.3、(1)10%;(2)方案①更优惠,理由见解析.【分析】(1)设平均每次下调的百分率为x,利用预订每平方米销售价格×(1-x)2=开盘每平方米销售价格列方程解答即可;(2)分别解出两种方案的房款,再作比较即可.【详解】解:(1)设平均每次下调的百分率为x,根据题意列方程得,解得(舍去)答:平均每次下调的百分率为10%.(2)方案①的房款:(元)加上两年的物业管理费共需要:(元)方案②的房款:(元)故方案①更优惠.【点睛】本题考查一元二次方程的应用,掌握相关知识,根据等量关系列方程,解方程是关键.4、(1);(2);(3);(4).【分析】(1)根据算术平方根的性质、负整指数幂的性质、正弦定义等知识计算解题;(2)根据二次根式的性质、二次根式的乘除法法则、完全平方公式等知识计算解题,(3)利用配方法解题;(4)利用提公因式法结合整体思想解题.【详解】解:(1);(2);(3)(4)或【点睛】本题考查实数的混合运算、二次根式的乘除法、解一元二次方程等知识,涉及正弦、整体思想等知识,是重要考点,难度一般,掌握相关知识是解题关键.5、(1)﹣2;;(2)m2n+mn2=.【分析】(1)直接根据根与系数的关系可得答案;(2)由题意得出m、n可看作方程,据此知m+n=1,mn=,将其代入计算可得;【详解】解:(1)∵一元二次方程5x2+10x﹣1=0的两个根为x1,x2,∴x1+x2,x1x2;故答案为:﹣2;;(2)∵7m2﹣7m﹣1=0,7n2﹣7n﹣1=0,且m≠n,∴m、n可看作方程7x2﹣7x﹣1=0,∴m+n=1,mn,∴m2n+mn2=mn(m+n);【点睛】本题主要考查根与系数的关系,求代数式的值,解题的关键是根据题意建立合适的方程及运算法则进行解题.
相关试卷
这是一份2020-2021学年第十六章 一元二次方程综合与测试一课一练,共17页。试卷主要包含了已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共18页。试卷主要包含了方程的解是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试当堂达标检测题,共17页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。