初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共16页。试卷主要包含了用配方法解方程,则方程可变形为,方程x2﹣x=0的解是,一元二次方程的解为等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列一元二次方程两实数根和为-4的是( )A. B.C. D.2、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )A. B.C. D.3、已知是一元二次方程的一个根,则代数式的值为( )A.2020 B.2021 C.2022 D.20234、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )A.5 B.3 C.-3 D.-45、用配方法解方程,则方程可变形为( )A. B. C. D.6、方程x2﹣x=0的解是( )A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=17、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.48、一元二次方程的解为( )A., B., C., D.,9、把长为2 m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积.设较长一段的长为x m,依题意,可列方程为( )A. B. C. D.10、对于一元二次方程ax2+bx+c=0(a≠0),有下列说法:①当a<0,且b>a+c时,方程一定有实数根;②若ac<0,则方程有两个不相等的实数根;③若a-b+c=0,则方程一定有一个根为-1;④若方程有两个不相等的实数根,则方程bx2+ax+c=0一定有两个不相等的实数根.其中正确的有( )A.①②③ B.①②④ C.②③ D.①②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程7x2﹣6x﹣5=0的解为 ______________.2、已知关于x的一元二次方程3x2+4x+m=0有实数根,则m的取值范围是_______.3、某药品经过两次降价,每瓶零售价由100元降为81元,若设平均每次降价的百分率为x,则由题意可列方程为 ________________,可得x=____.4、下列各数:-2,-1,0,2,3,是一元二次方程x²+3x+2=0的根的是_________.5、小华在解方程x2 = 3x时,只得出一个根x = 3,则被他漏掉的一个根是x =_______ 三、解答题(5小题,每小题10分,共计50分)1、某公司自主研发一款健康的产品———燕窝饮品,主要成分是水果和燕窝.经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯.若每杯每降低1元,就会多售出3杯.已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%.若每天的毛利润可达到600元.(1)求该饮品的售价;(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额.2、设,是关于的一元二次方程的两个实数根.(1)求的取值范围;(2)若,求的值.3、已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.4、已知关于x的方程x2 - 5x + m = 0(1)若方程有一根为 - 1,求m的值;(2)若方程无实数根,求m的取值范围5、解方程:(1)x2+4x﹣1=0 (2)x(x-2)+x-2=0 -参考答案-一、单选题1、D【分析】根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可【详解】解:A. ,,,不符合题意;B. ,,该方程无实根,不符合题意;C. ,,该方程无实根,不符合题意;D. ,,该方程有实根,且,符合题意;故选D【点睛】本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键.2、C【分析】设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.【详解】解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,依题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.3、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可.【详解】解:把代入一元二次方程得,,,故选:B.【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.4、A【分析】根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.【详解】解:∵一元二次方程的两根分别为m,n,∴,,∴,故选:A.【点睛】本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.5、D【分析】根据配方法解一元二次方程步骤变形即可.【详解】∵∴∴∴∴故选:D.【点睛】本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.6、D【分析】因式分解后求解即可.【详解】x2﹣x=0,x(x-1)=0,x=0,或x-1=0,解得x1=0,x2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.7、D【分析】先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.【详解】解: ,,,故甲出现错误; 即 或 故乙出现了错误;而丙解方程时,移项没有改变符号,丁出现了计算错误;所以出现错误的人数是4人,故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.8、A【分析】根据因式分解法即可求解.【详解】∴x-1=0或x-3=0∴,故选A.【点睛】此题主要考查解一元二次方程的求解,解题的关键是熟知因式分解法的运用.9、A【分析】由题意依据较长一段的长的平方等于较短一段的长与原绳长的积建立方程即可得出答案.【详解】解:设较长一段的长为x m,则较短一段的长为(2-x )m,由题意得:.故选:A.【点睛】本题考查一元二次方程的实际运用,根据题意找出题目蕴含的数量关系是解决问题的关键.10、C【分析】①令,,,由判别式即可判断;②若,则a、c异号,由判别式即可判断;③令得,即可判断;④取,,来进行判断即可.【详解】①由当,,,,方程此时没有实数根,故①错误;②若,a、c异号,则,方程一定有两个不相等的实数根,所以②正确;③令得,则方程一定有一个根为;③正确;④当,,时,有两个不相等的根为,但方程只有一个根为1,故④错误.故选:C.【点睛】本题考查一元二次方程的解以及判别式,掌握用判别式判断根的情况是解题的关键.二、填空题1、【分析】找出a,b,c的值,代入求根公式即可求出解.【详解】解:7x2﹣6x﹣5=0∵a=7,b=﹣6,c=﹣5,∵△=36﹣4×7×(﹣5)=176>0,∴ ,∴x1=,x2=.【点睛】本题考查一元二次方程的解法,常用的解法有:直接开方法,配方法,公式法,因式分解法,做题的关键是根据题目选择合适的方法.2、【分析】一元二次方程有实数根,则,建立关于m的不等式,求出m的取值范围.【详解】解:∵关于x的一元二次方程3x2+4x+m=0有实数根,∴,故答案为:.【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,.3、100(1﹣x)2=81 10% 【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x),第二次后的价格是100(1﹣x)2,据此即可列方程求解.【详解】解:根据题意得:100(1﹣x)2=81,解得:x=0.1=10%或x=1.1(舍去),故答案为:100(1﹣x)2=81,10%.【点睛】本题考查一元二次方程解降价的百分率问题,掌握一元二次方程解降价的百分率问题的方法与步骤是解题关键.4、-1和-2【分析】直接用因式分解的方法求出一元二次方程的根即可得到答案.【详解】解:∵,∴,解得,,∴-2,-1,0,2,3,中是方程的根的是-2,-1,故答案为:-1和-2.【点睛】本题主要考查了解一元二次方程和一元二次方程根的定义,熟知解一元二次方程的方法是解题的关键.5、0【分析】根据因式分解法即可求出答案.【详解】解:∵x2=3x,
∴x2-3x=0,
∴,
∴x=0或x-3=0,
∴x1=0,x2=3,
故答案为:0.【点睛】本题考查解一元二次方程,解题的关键是熟练运用因式分解法.三、解答题1、(1)该商品的售价为30元/件;(2)该店每月的捐款金额为270元.【分析】(1)根据总利润=每杯饮品的利润×销售数量,即可得出关于x的一元二次方程,解之再根据题意取舍即可得出结论;(2)根据每月的捐款金额=1×每天销售的数量×30,即可得出结论.【详解】解:(1)∵该饮品的售价为x元/杯(20≤x≤40),且当售价是40元/杯时,每天可售出该饮品60杯,且售价每降低1元,就会多售出3杯,∴每天能售出该饮品的杯数为60+3(40-x)=(180-3x)杯.依题意,得:(x-20)(180-3x)-300=600,整理,得:x2-80x+1500=0,解得:x1=30,x2=50.∵物价局规定每杯饮品的利润不得高于成本价的80%,∴x≤40×80%,即x≤32,x=50(不合题意,舍去).答:该商品的售价为30元/件;(2)1×(180-3×30)×30=270(元).答:该店每月的捐款金额为270元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2、(1);(2)【分析】(1)由方程有两个实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)根据根与系数的关系即可得出,,结合m的取值范围即可得出,,再由即可得出,解之即可得出m的值.【详解】(1)依题意可知:,即,解得:;(2)依题意可知:,,∵,∴,,∴,,∵,∴,∴,解得:或,∵,∴.【点睛】本题考查了根与系数的关系,根的判别式,解题的关键是掌握根与系数的关系,根的判别式的使用方法.3、m的最大整数值为0【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可.【详解】解:∵关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,∴b2﹣4ac=(2m)2﹣4(m﹣1)(m+3)=4m2﹣(4m2+8m﹣12)=4m2﹣4m2﹣8m+12=﹣8m+12≥0,m﹣1≠0,解得:m≤且m≠1,则m的最大整数值为0.【点睛】本题主要考查了一元二次方程根的判别式的应用,准确计算是解题的关键.4、(1)m的值为.(2)【分析】(1)将代入原方程,即可求出m的值.(2)令根的判别式,即可求出m的取值范围.【详解】(1)解:方程有一根为 - 1,是该方程的根,,解得:,故m的值为.(2)解:方程无实数根,解得:.【点睛】本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键.5、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=2,x2=-1【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.【详解】解:(1)∵x2+4x﹣1=0,∴a=1,b=4,c=﹣1,∵△=16+4=20,∴x=,∴,;(2)x(x-2)+x-2=0,因式分解得:(x﹣2)(x+1)=0,可得x﹣2=0或x+1=0,解得:x1=2,x2=﹣1.【点睛】本题主要考查了一元二次方程的求解,掌握解一元二次方程的方法与步骤,准确利用公式法和因式分解法解方程是关键.
相关试卷
这是一份初中北京课改版第十六章 一元二次方程综合与测试综合训练题,共16页。试卷主要包含了下列方程中是一元二次方程的是,小亮等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试精练,共16页。试卷主要包含了把方程化成.,一元二次方程的解是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共18页。试卷主要包含了方程的解是,一元二次方程根的情况是,方程x2﹣8x=5的根的情况是等内容,欢迎下载使用。