初中数学第十六章 一元二次方程综合与测试课后复习题
展开京改版八年级数学下册第十六章一元二次方程专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )
A. B.
C. D.
2、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程
A.128(1 - x2)= 88 B.88(1 + x)2 = 128
C.128(1 - 2x)= 88 D.128(1 - x)2 = 88
3、一元二次方程x2+2x=1的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
4、用配方法解方程,则方程可变形为( )
A. B. C. D.
5、下列方程中是一元二次方程的是( )
A.2x+1=0 B.y2+x=1 C.x2+1=0 D.
6、某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有( )个班级.
A.8 B.9 C.10 D.11
7、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m-n的值是( )
A.-10 B.10 C.-6 D.6
8、方程2x2-3x=2的一次项系数和常数项分别是( )
A.3和2 B.-3和2 C.3和-2 D.-3和-2
9、若方程的一个根为,则的值是( )
A.7 B. C.4 D.
10、已知m,n是方程的两根,则代数式的值等于( )
A.0 B. C.9 D.11
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、关于x的一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为_______.
2、已知关于的一元二次方程(a,b,c为常数,)的解为,则方程的解为__________.
3、某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比1月份的利润增加4.2万元,设该产品利润平均每月的增长率为x,则可列方程为___.
4、方程x2﹣9=0的解是_____.
5、某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,设该厂四、五月份的月平均增长率为x,则可列方程为______.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:2x2 - 4x - 1 = 0
2、中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均年收入20000元,到2019年人均年收入达到28800元.假设该地区居民年人均收入平均增长率都相同.
(1)求该地区居民年人均收入平均增长率;
(2)请你预测该地区2022年人均年收入.
3、解方程:
(1)
(2)
4、用适当的方法解方程.
(1)
(2)
5、如图,在一块长为30m、宽为20m的矩形地面上,要修建两横两竖的道路(横竖道路各与矩形的一条边平行),横、竖道路的宽度比为2:3,剩余部分种上草坪,如果要使草坪的面积是地面面积的四分之一,应如何设计道路的宽度?
-参考答案-
一、单选题
1、C
【分析】
根据增长率的意义,列式即可.
【详解】
设这个增长率为,
根据题意,得,
故选C.
【点睛】
本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.
2、D
【分析】
根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.
【详解】
解:依题意得:128(1-x)2=88.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
3、A
【分析】
方程整理后得出x2+2x﹣1=0,求出Δ=8>0,再根据根的判别式的内容得出答案即可.
【详解】
解:x2+2x=1,
整理得,x2+2x﹣1=0,
∵Δ=22﹣4×1×(﹣1)=8>0,
∴方程有两个不相等的实数根,
故选:A.
【点睛】
本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.
4、D
【分析】
根据配方法解一元二次方程步骤变形即可.
【详解】
∵
∴
∴
∴
∴
故选:D.
【点睛】
本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.
5、C
【详解】
解:A、未知数次数是1,不是一元二次方程,故本选项不符合题意;
B、含有2个未知数,不是一元二次方程,故本选项不符合题意;
C、是一元二次方程,故本选项符合题意;
D、分母中含有未知数,不是一元二次方程,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了一元二次方程的定义,熟练掌握含有1个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.
6、A
【分析】
设该校八年级有x个班级,利用比赛的总场次数=参赛的班级数×(参赛的班级数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【详解】
解:设该校八年级有x个班级,
依题意得:x(x﹣1)=28,
整理得:x2﹣x﹣56=0,
解得:x1=8,x2=﹣7(不合题意,舍去).
故选:A.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
7、D
【分析】
根据一元二次方程x2+mx+n=0的两个实数根分别为x1=2、x2=4结合根与系数的关系,分别求出m和n的值,最后代入m-n即可解答.
【详解】
解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2、x2=4,
∴x1+x2=﹣m=-2+4,解得:m=﹣2,
x1•x2=n=-2×4,解得:n=-8,
∴m-n=﹣2-(-8)=6.
故选D.
【点睛】
本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系求出m、n的值是解答本题的关键.
8、D
【分析】
先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得.
【详解】
解:
一次项系数为:-3,常数项为:-2,
故选D.
【点睛】
本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式.
9、D
【分析】
将代入方程求解即可.
【详解】
解:将代入可得:
,
解得:,
故选:D.
【点睛】
题目主要考查方程与根的关系,将根代入方程求解是解题关键.
10、C
【分析】
利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.
【详解】
解:∵m,n是方程的两根,
∴, ,
∴,
∴.
故选:C
【点睛】
本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.
二、填空题
1、9
【分析】
根据方程有两个相等的实数根得出Δ=0,据此列出关于m的方程,解之即可.
【详解】
解:∵关于x的一元二次方程x2+6x+m=0有两个相等的实数根,
,,,
∴Δ=62-4×1×m=0,
解得m=9,
故答案为:9.
【点睛】
本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:
①当Δ>0时,方程有两个不相等的两个实数根;
②当Δ=0时,方程有两个相等的两个实数根;
③当Δ<0时,方程无实数根.
上面的结论反过来也成立.
2、##
【分析】
根据一元二次方程解的定义可得令,进而即可求得,即方程的解
【详解】
解:∵关于的一元二次方程(a,b,c为常数,)的解为,
∴方程中,令
则,即或
解得
即的解为
故答案为:
【点睛】
本题考查了一元二次方程解的定义,掌握解的定义,换元是解题的关键.
3、20(1+x)2=20+4.2
【分析】
根据该公司销售该种产品1月份及3月份获得的利润,即可得出关于x的一元二次方程,此题得解.
【详解】
解:依题意得:20(1+x)2=20+4.2,
故答案为:20(1+x)2=20+4.2.
【点睛】
本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
4、x=±3
【分析】
这个等式左边是一个平方差公式,直接分解因式,然后求出x即可.
【详解】
解:x2﹣9=0,
(x+3)(x﹣3)=0,
或
所以x=3或x=﹣3.
故答案为:x=±3.
【点睛】
本题考查的是利用因式分解解一元二次方程,掌握“利用平方差公式把方程的左边分解因式”是解题的关键.
5、
【分析】
该厂四、五月份的月平均增长率为x,根据增长率公式即可得出五月份的产量是,据此列方程即可.
【详解】
∵该厂四、五月份的月平均增长率为x,
∴五月份的产量是,
∴,
故答案为:.
【点睛】
本题考查一元二次方程的应用,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到,再经过第二次调整就是,增长用“+”,下降用“−”.
三、解答题
1、,.
【分析】
此题采用公式法即可求出一元二次方程的解.
【详解】
解:由题意可知:,,
∴
∴
∴,.
【点睛】
本题主要是考查了公式法求解一元二次方程,熟练记忆一元二次方程的求根公式,是求解该题的关键.
2、(1)20%;(2)49766.4元
【分析】
(1)设该地区居民年人均收入平均增长率为x,则2019年人均年收入可以表示为: 再列方程解方程即可;
(2)2022年人均年收入可以表示为28800×(1+0.2)3,再计算即可.
【详解】
解:(1)设该地区居民年人均收入平均增长率为x,
20000(1+x)2=28800,
解得,x1=0.2,x2=﹣2.2(舍去),
∴该地区居民年人均收入平均增长率为20%
(2)28800×(1+0.2)3=49766.4(元)
答:该地区2022年人均年收入是49766.4元.
【点睛】
本题考查的是一元二次方程的应用,掌握“利用一元二次方程解决增长率问题”是解本题的关键.
3、(1)原方程无解;(2).
【分析】
(1)方程两边同乘以化成整式方程,再解一元一次方程即可得;
(2)方程两边同乘以化成整式方程,再解一元二次方程即可得.
【详解】
解:(1),
方程两边同乘以,得,
移项、合并同类项,得,
系数化为1,得,
经检验,不是分式方程的解,
所以原方程无解;
(2),
方程两边同乘以,得,
移项、合并同类项,得,
因式分解,得,
解得或,
经检验,不是分式方程的解;是分式方程的解,
所以原方程的解为.
【点睛】
本题考查了解分式方程,熟练掌握方程的解法是解题关键.需注意的是,分式方程需进行检验.
4、(1),;(2)
【分析】
(1)提取公因式(x-2),利用因式分解法求解即可求得答案;
(2)利用因式分解法求解即可求得答案.
【详解】
解:(1)
∴,
(2)
∴
【点睛】
此题考查了一元二次方程的解法.注意选择适宜的解题方法是解此题的关键.
5、横着的道路的宽为,则竖着的道路宽为.
【分析】
设横着的道路的宽为,则竖着的道路宽为,然后根据要使草坪的面积是地面面积的四分之一,列出方程求解即可.
【详解】
解:设横着的道路的宽为,则竖着的道路宽为,
由题意得:,
∴,
∴,
∴
解得或,
∵当时,,不符合题意,
∴,
∴横着的道路的宽为,则竖着的道路宽为.
【点睛】
本题主要考查了一元二次方程的应用,解题的关键在于正确理解题意,列出方程求解.
初中北京课改版第十六章 一元二次方程综合与测试当堂检测题: 这是一份初中北京课改版第十六章 一元二次方程综合与测试当堂检测题,共15页。试卷主要包含了若a是方程的一个根,则的值为,已知方程的两根分别为m等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试精练: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试精练,共16页。试卷主要包含了下列事件为必然事件的是,方程的解是等内容,欢迎下载使用。
北京课改版八年级下册第十六章 一元二次方程综合与测试达标测试: 这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试达标测试,共21页。试卷主要包含了一元二次方程x2=-2x的解是,方程x2﹣x=0的解是,方程x2﹣8x=5的根的情况是等内容,欢迎下载使用。