初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试达标测试
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试达标测试,共16页。试卷主要包含了一元二次方程的二次项系数等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一元二次方程的一个根为,那么c的值为( ).A.9 B.3 C. D.2、若m是方程x2+x﹣1=0的根,则2m2+2m+2020的值为( )A.2022 B.2021 C.2020 D.20193、目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到3.92万户,设全市5G用户数年平均增长率为x,则x值为( )A.20% B.30% C.40% D.50%4、已知一个直角三角形的两边长是方程的两个根,则这个直角三角形的斜边长为( )A.3 B. C.3或 D.5或5、已知是一元二次方程的一个根,则代数式的值为( )A.2020 B.2021 C.2022 D.20236、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为( )A.﹣2 B.2 C.﹣4 D.47、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为( )A.x1=0,x2=-3 B.x1=-1,x2=-4C.x1=0,x2=3, D.x1=2,x2=-18、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )A.5 B.3 C.-3 D.-49、一元二次方程的二次项系数、一次项系数、常数项分别是( )A.2,1,5 B.2,1,-5 C.2,0,-5 D.2,0,510、已知m,n是方程的两根,则代数式的值等于( )A.0 B. C.9 D.11第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为_______.2、若关于x的一元二次方程ax2+bx+2=0(a≠0)的一个解是x=1,则a+b的值为 _____.3、已知关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,则k的取值范围是 _____.4、学校组织一次乒乓球赛,要求每两队之间都要比赛一场.若共赛了28场,设有个球队参赛,根据题意列出满足的关系式为_______.5、若方程是关于的一元二次方程,则__________.三、解答题(5小题,每小题10分,共计50分)1、用适当的方法解方程.(1)(2)2、解方程:.3、解方程:(1)(配方法)(2)(公式法)4、(1)解一元二次方程:x2﹣6x+9=(5﹣2x)2;(2)求证:无论m取何值时,方程(x﹣3)(x﹣2)﹣m2=0总有两个不相等的实数根.5、解方程:(1) x(x -2)+ x -2 = 0 (2) x2 - 4x + 1 = 0 (用配方法) -参考答案-一、单选题1、D【分析】把x=-3代入方程,然后解关于c的方程即可.【详解】解:把x=-3代入方程得9+c=0,所以c=-9.故选D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2、A【分析】根据题意,将m代入方程中,得到,再将整理成,利用整体代入法解题即可.【详解】解:是方程的根,,∴故选A.【点睛】本题考查一元二次方程的解、代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.3、C【分析】先用含x的代数式表示出2021年底5G用户的数量, 然后根据2021年底5G用户数为3.92万户列出关于x的方程,解方程即得答案.【详解】解:设全市5G用户数年平均增长率为x,根据题意,得: ,整理得:,∴,解得:x1=0.4=40%,x2= −2.4(不合题意,舍去).故选:C.【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.4、D【分析】利用因式分解法求出一元二次方程的两根,按斜边是否是两根中的一个,进行分类讨论,通过勾股定理求斜边长,最后即可求出答案.【详解】解:,因式分解得:,解得:,,情况1:当为斜边的长时,此时斜边长为5,情况2:当,,都为直角边长时,此时斜边长为,这个直角三角形的斜边长为5或,故选:D.【点睛】本题主要是考查了因式分解法求解方程,以及勾股定理求边长,在不确定直角边和斜边的情况下,一定要分类讨论,分情况进行求解.5、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可.【详解】解:把代入一元二次方程得,,,故选:B.【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.6、B【分析】根据根的含义将代入一元二次方程x2+k﹣3=0求解即可.【详解】解:∵一元二次方程x2+k﹣3=0有一个根为1,∴将代入得,,解得:.故选:B.【点睛】此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念.7、D【分析】首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,,然后代入一元二次方程ax2-bx+c=3中即可求解.【详解】解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,∴一元二次方程ax2+bx+c=3有一个根为1,∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,∴,,∵ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即,∴,∴,∴或,解得:.故选:D.【点睛】此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.8、A【分析】根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.【详解】解:∵一元二次方程的两根分别为m,n,∴,,∴,故选:A.【点睛】本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.9、B【分析】根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.【详解】解:∵一元二次方程2x2+x-5=0,∴二次项系数、一次项系数、常数项分别是2、1、-5,故选:B.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).10、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.【详解】解:∵m,n是方程的两根,∴, ,∴,∴.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.二、填空题1、(62﹣x)(42﹣x)=2400.【分析】设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据草坪的面积为2400平方米,即可得出关于x的一元二次方程,此题得解.【详解】解:设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据题意得(62﹣x)(42﹣x)=2400.故答案为:(62﹣x)(42﹣x)=2400.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2、-2【分析】根据一元二次方程解得定义把代入到进行求解即可.【详解】解:∵关于x的一元二次方程的一个解是,∴,∴,故答案为:-2.【点睛】本题主要考查了一元二次方程解得定义,代数式求值,熟知一元二次方程解的定义是解题的关键.3、【分析】根据方程的系数结合根的判别式Δ>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】解:∵关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,∴Δ=(﹣4)2﹣4×2×(k﹣)>0,解得:.故答案为:【点睛】本题考查了一元二次方程根的判别式,掌握一元二次方程根的判别式的符号对应的三种根的情况是解题的关键.(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.4、【分析】每支球队要和其他球队共比赛场,一共个球队,共需要 场比赛,但每两支球队之间重复了一次,故实际需要,根据题意,即可列出方程.【详解】解:由题意可知:每支球队要和其他球队共比赛场,一共个球队,共需要 场比赛但每两支球队之间重复了一次,故实际比赛场数为,,故答案为:.【点睛】本题主要是考查了列一元二次方程,熟练地找到等式关系,根据等式关系列出对应方程,这是解决该类题目的关键.5、【分析】形如,含有一个未知数,未知数的最高次数是2的方程是一元二次方程,根据定义列不等式或方程,从而可得答案.【详解】方程是关于x的一元二次方程,,由①得:,由②得:,.故答案为:.【点睛】本题考查的是一元二次方程的定义,根据一元二次方程的定义列方程或不等式是解题的关键.三、解答题1、(1),;(2)【分析】(1)提取公因式(x-2),利用因式分解法求解即可求得答案;(2)利用因式分解法求解即可求得答案.【详解】解:(1) ∴, (2) ∴【点睛】此题考查了一元二次方程的解法.注意选择适宜的解题方法是解此题的关键.2、,【分析】先用根的判别式判断根是否存在,然后再利用求根公式解答即可.【详解】解:∵,∴,即,.【点睛】本题主要考查了运用公式法解一元二次方程,牢记一元二次方程的求根公式()是解答本题的关键.3、(1);(2)【分析】(1)利用配方法,首先将常数项移项,再配方,方程两边同时加上一次项系数一半的平方求出即可;(2)利用公式法直接代入求出即可.【详解】(1)(2)∴∴【点睛】本题考查了解一元二次方程,熟练掌握公式法、配方法的解题步骤是解题的关键.4、(1);(2)见详解.【分析】(1)首先利用完全平方公式以及平方差公式分解因式,进而解方程得出即可;
(2)首先表示出Δ,得出Δ符号进而求出即可.【详解】(1)解:,,
则,
整理得:,
解得:;
(2)证明:把化为一般形式:,
,
故无论m为何值,4m2+1永远大于0,则方程总有两个不相等的实数根.【点睛】此题主要考查了因式分解法解一元二次方程以及根的判别式,正确分解因式是解题关键.5、(1),;(2),.【分析】(1)根据因式分解法解方程即可得;(2)利用配方法将等号左边变为完全平方公式,然后开方求解即可.【详解】解:(1),,∴或,解得:,;(2),,,∴或,解得:,.【点睛】题目主要考查解一元二次方程的因式分解法和配方法,熟练运用两种方法是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测,共20页。试卷主要包含了方程的解是,用配方法解方程,则方程可变形为等内容,欢迎下载使用。
这是一份初中北京课改版第十六章 一元二次方程综合与测试当堂检测题,共15页。试卷主要包含了若a是方程的一个根,则的值为,已知方程的两根分别为m等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试达标测试,共18页。