搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析京改版八年级数学下册第十六章一元二次方程达标测试试卷(含答案详解)

    2022年最新精品解析京改版八年级数学下册第十六章一元二次方程达标测试试卷(含答案详解)第1页
    2022年最新精品解析京改版八年级数学下册第十六章一元二次方程达标测试试卷(含答案详解)第2页
    2022年最新精品解析京改版八年级数学下册第十六章一元二次方程达标测试试卷(含答案详解)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十六章 一元二次方程综合与测试同步训练题

    展开

    这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步训练题,共19页。试卷主要包含了方程的解是等内容,欢迎下载使用。
    京改版八年级数学下册第十六章一元二次方程达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是(  )A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠02、下列方程中一定是一元二次方程的是(    A.x2﹣4=0 B.ax2bxc=0 C.x2y+1=0 D.x﹣1=03、若一元二次方程ax2+bx+c=0的系数满足ac<0,则方程根的情况是(  )A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.无法判断4、方程的解是(    A.6 B.0 C.0或6 D.-6或05、若m是方程x2x﹣1=0的根,则2m2+2m+2020的值为(   A.2022 B.2021 C.2020 D.20196、已知一元二次方程x2-4x-1=0的两根分别为mn,则mnmn的值是(    A.5 B.3 C.-3 D.-47、目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到3.92万户,设全市5G用户数年平均增长率为x,则x值为(  )A.20% B.30% C.40% D.50%8、解一元二次方程x2-6x-4=0,配方后正确的是(    A.(x+3)2=13 B.(x-3)2=5 C.(x-3)2=4 D.(x-3)2=139、在等式①;②;③;⑤;⑤中,符合一元二次方程概念的是(    A.①⑤ B.① C.④ D.①④10、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为(    A. B.C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、阅读下列材料:早在公元1世纪左右,我国著名的数学典籍《九章算术》中就已经对一元二次方程进行了研究:在“勾股”章中,根据实际问题列出方程x2 + 34x - 71000 = 0,给出该方程的正根为x = 250,并简略指出解该方程的方法:开方除之.其后,受此启发,有数学家研究了利用几何图形求解该方程的方法,对于丰富我国古代有关一元二次方程的研究具有重要的价值.用该方法求解的过程如下(如图):第一步:构造已知小正方形边长为x,将其边长增加17,得到大正方形.第二步:推理根据图形中面积之间的关系,可得(x+17)2 = x2 + 2 × 17x + 172由原方程x2 + 34x - 71000 = 0,得x2 + 34x = 71000.所以(x+17)2 = 71000 + 172所以(x+17)2 = 71289.直接开方可得正根x = 250.依照上述解法,要解方程x2 + bx + c = 0(b > 0),请写出第一步“构造”的具体内容与第二步中“(x+17)2 = 71000 + 172”相应的等式是 _________ .2、如图,一长为32m、宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化.若已知绿化面积为540㎡,则道路的宽为__________m.3、己知t是方程x2x﹣2=0的根,则式子2t2﹣2t+2021的值为_____.4、设x1x2是方程2x2+3x﹣4=0的两个实数根,则4x12+4x1﹣2x2的值为 ______.5、已知关于x的一元二次方程3x2+4x+m=0有实数根,则m的取值范围是_______.三、解答题(5小题,每小题10分,共计50分)1、求证:无论m取任何实数,关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0恒有实数根.2、某种服装,平均每天可以销售20件,每件赢利44元.在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件.(1)如果每件降价x元,则每天可以销售          件服装;(用含x的代数式表示)(2)如果商家每天要获得利润1600元.则每件服装应降价多少元;3、已知,如图,在平面直角坐标系内,点A的坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(﹣9,3).(1)求直线l1l2的表达式;(2)点C为直线OB上一动点(点C不与点OB重合),作CDy轴交直线l2于点D,过点CD分别向y轴作垂线,垂足分别为FE,得到矩形CDEF①设点C的纵坐标为n,求点D的坐标(用含n的代数式表示);②若矩形CDEF的面积为48,请直接写出此时点C的坐标.4、宜宾市某楼盘准备以每平方米9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米7290元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?5、已知关于的一元二次方程(1)求证:方程总有两个实数根;(2)若,且此方程的两个实数根的差为3,求的值. -参考答案-一、单选题1、B【分析】根据当时,方程是一元一次方程有实数根,当时,根据一元二次方程的定义和根的判别式的意义得到k≠0且Δ=(-4)2-4 k×(-2)≥0,然后求出两不等式组的公共部分,两种情况合并即可.【详解】解:根据题意得:①当时,方程是一元一次方程,此时﹣4x﹣2=0,方程有实数解;②当时,此方程是一元二次方程,可得k≠0且Δ=(-4)2-4 k×(-2)≥0,解得k≥-2且k≠0.综上,当时,关于x的方程kx2﹣4x﹣2=0有实数根,故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.2、A【分析】利用一元二次方程定义进行解答即可.【详解】解:A、是一元二次方程,故此选项符合题意;B、当a=0时,不是一元二次方程,故此选项不合题意;C、含有两个未知数,不是一元二次方程,故此选项不合题意;D、未知数次数为1,不是一元二次方程,故此选项不合题意;故选:A.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.3、B【分析】判别式Δ=b2﹣4ac,由于ac<0,则﹣ac>0,而b2≥0,于是可判断Δ>0,然后根据判别式的意义判断根的情况.【详解】解:∵关于x的一元二次方程为ax2+bx+c=0,∴Δ=b2﹣4acac<0,∴﹣ac>0,又∵b2≥0,∴Δ>0,∴方程有两个不相等的实数根.故选B.【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3) Δ<0,方程没有实数根.4、C【分析】根据一元二次方程的解法可直接进行求解.【详解】解:解得:故选C.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.5、A【分析】根据题意,将m代入方程中,得到,再将整理成,利用整体代入法解题即可.【详解】解:是方程的根,故选A.【点睛】本题考查一元二次方程的解、代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.6、A【分析】根据一元二次方程根与系数的关系先求出mnmn的值,然后代入计算即可.【详解】解:∵一元二次方程的两根分别为mn故选:A.【点睛】本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为,则其两个根满足,掌握此定理是解题关键.7、C【分析】先用含x的代数式表示出2021年底5G用户的数量, 然后根据2021年底5G用户数为3.92万户列出关于x的方程,解方程即得答案.【详解】解:设全市5G用户数年平均增长率为x根据题意,得:整理得:解得:x1=0.4=40%,x2= −2.4(不合题意,舍去).故选:C.【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.8、D【分析】根据配方法即可求出答案.【详解】解:∵x2﹣6x﹣4=0,x2﹣6x=4,x2﹣6x+9=13,∴(x﹣3)2=13,故选D.【点睛】本题考查了配方法解方程,注意配方时先把常数项移到右边,然后把二次项系数化为1,最后等号两面同时加上一次项系数一半的平方.9、B【分析】根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐个分析判断即可.【详解】解:①,是一元二次方程,符合题意;,不是方程,不符合题意;,不是整式方程,不符合题意;,是二元一次方程,不符合题意;,是一元一次方程,不符合题意故符合一元二次方程概念的是①故选B【点睛】本题考查了一元二次方程定义,掌握一元二次方程定义是解题的关键.10、C【分析】根据等量关系第10月的营业额×(1+x2=第12月的营业额列方程即可.【详解】解:根据题意,得:故选:C.【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.二、填空题1、
     【分析】根据题中例题及配方法求解即可得.【详解】解:第一步:“构造”内容为:已知小正方形边长为x,将其边长增加,得到大正方形;第二步:“推理”,得故答案为:【点睛】题目主要考查利用配方法解一元二次方程的应用,理解题中例题及配方法是解题关键.2、2【分析】把四块耕地拼到一起正好构成一个矩形,矩形的长和宽分别是(32-x)m和(20-x)m,根据矩形的面积公式,列出关于道路宽的方程求解.【详解】解:设道路的宽是xm,(32−x)(20−x)=540,整理得因式分解得,解得:x1=2,x2=50(舍),答:道路的宽是2m.故答案为2.【点睛】本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.3、2025【分析】根据一元二次方程的解的定义得到t2-t-2=0,则t2-t=2,然后把2t2-2t+2021化成2(t2-t)+2021,再利用整体代入的方法计算即可.【详解】解:当x=t时,t2-t-2=0,则t2-t=2,所以2t2-2t+2021=2(t2-t)+2021=4+2021=2025.故答案为:2025.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.用了整体代入思想.4、11【分析】先根据一元二次方程根的定义得到2x12=﹣3x1+4,则4x12+4x1﹣2x2化为﹣2(x1+x2)+8,再根据根与系数的关系得到x1+x2=﹣,然后利用整体代入的方法计算.【详解】解:∵x1是方程2x2+3x﹣4=0的根,∴2x12+3x1﹣4=0,∴2x12=﹣3x1+4,∴4x12+4x1﹣2x2=2(﹣3x1+4)+4x1﹣2x2=﹣2(x1+x2)+8,x1x2是方程2x2+3x﹣4=0的两个实数根,x1+x2=﹣∴4x12+4x1﹣2x2=﹣2(x1+x2)+8=﹣2×(﹣)+8=11.故答案为:11.【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则5、【分析】一元二次方程有实数根,则,建立关于m的不等式,求出m的取值范围.【详解】解:∵关于x的一元二次方程3x2+4x+m=0有实数根,故答案为:【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,三、解答题1、见解析【分析】分两种情况,当m=0时,方程为一元一次方程,有一个实数解;当m≠0时,方程为一元二次方程,由于b2-4ac=(m﹣1)2≥0,则可判断方程有两个实数根.【详解】证明:当m=0时,方程化为x﹣2=0,解得x=2;m≠0时,∵b2-4ac=(3m﹣1)2﹣4m(2m﹣2)m2﹣2m+1=(m﹣1)2≥0,∴关于x的一元二次方程mx2﹣(3m﹣1)x+2m﹣2=0有两个实数根,综上所述,无论m取任何实数,关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0恒有实数根.【点睛】本题考查了一元一次方程的解,以及一元二次方程根的判别式,分类讨论是解答本题的关键.2、(1)(20+5x);(2)4元【分析】(1)根据“每件降价1元,则每天可多售5件”可以列出代数式;
    (2)根据关系式:每件服装的盈利×(原来的销售量+增加的销售量)=1600,计算得到结果即可.【详解】(1)由题意得:每天可以销售服装的件数为:(20+5x);(2)由题意得:(44﹣x)(20+5x)=1600·解得,x1=4,x2=36∵36>10,x2=36(不合题意,舍去),答:每件服装应降价4元.【点睛】本题考查了一元二次方程的应用,得到现在的销售量是解决本题的难点;根据每天盈利得到相应的等量关系是解决本题的关键.3、(1)y=﹣xyx+12;(2)①(﹣3n,﹣3n+12);②(3,﹣1)或C(﹣12,4)【分析】(1)从图中看以看出l1是正比例函数,l2是一次函数,根据点AB的坐标,用待定系数法即可求得l1l2的解析式;(2)①已知点C的纵坐标及点C在直线l1上,求得点C的横坐标;进而知道了点D的横坐标,点D在直线l2上,易得点D的坐标;②根据点C与点D坐标,求出CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,利用矩形的面积=长×宽,列出关于n的方程,解方程即可.【详解】解:(1)设直线l1的表达式为yk1x∵过点B(﹣9,3),∴﹣9k1=3,解得:k1=﹣∴直线l1的表达式为y=﹣x设直线l2的表达式为yk2x+b∵过点A (0,12),B(﹣9,3),解得:∴直线l2的表达式yx+12;(2)①∵点C在直线l1上,且点C的纵坐标为nn=﹣x解得:x=﹣3n∴点C的坐标为(﹣3nn),CDy轴,∴点D的横坐标为﹣3n∵点D在直线l2上,y=﹣3n+12,D(﹣3n,﹣3n+12);②∵C(﹣3nn),D(﹣3n,﹣3n+12),CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,∵矩形CDEF的面积为60,S矩形CDEFCFCD=|3n|×|﹣4n+12|=48,解得n=﹣1或n=﹣4,n=﹣1时,﹣3n=3,故C(3,﹣1),n=4时,﹣3n=1﹣12,故C(﹣12,4).综上所述,点C的坐标为:(3,﹣1)或C(﹣12,4).【点睛】本题考查待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程,掌握待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程是解题关键.4、(1)10%;(2)方案①更优惠,理由见解析.【分析】(1)设平均每次下调的百分率为x,利用预订每平方米销售价格×(1-x2=开盘每平方米销售价格列方程解答即可;(2)分别解出两种方案的房款,再作比较即可.【详解】解:(1)设平均每次下调的百分率为x,根据题意列方程得,解得(舍去)答:平均每次下调的百分率为10%.(2)方案①的房款:(元)加上两年的物业管理费共需要:(元)方案②的房款:(元)故方案①更优惠.【点睛】本题考查一元二次方程的应用,掌握相关知识,根据等量关系列方程,解方程是关键.5、(1)见解析;(2)【分析】(1)证明一元二次方程的判别式大于等于零即可;(2)用m表示出方程的两个根,比较大小后,作差计算即可.【详解】(1)证明:∵一元二次方程==   ∴ 该方程总有两个实数根.                   (2)解:∵一元二次方程解方程,得                    ∵该方程的两个实数根的差为3,【点睛】本题考查了一元二次方程根的判别式,方程的解法,熟练掌握判别式,并灵活运用实数的非负性是解题的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题:

    这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共14页。试卷主要包含了下列命题中,逆命题不正确的是,一元二次方程的二次项系数等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题:

    这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题,共18页。试卷主要包含了下列方程中是一元二次方程的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步达标检测题:

    这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步达标检测题,共17页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map