北京课改版八年级下册第十六章 一元二次方程综合与测试同步训练题
展开
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步训练题,共17页。试卷主要包含了用配方法解方程,则方程可变形为等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程中一定是一元二次方程的是( )A.x2﹣4=0 B.ax2+bx+c=0 C.x2﹣y+1=0 D.+x﹣1=02、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为( )A.x1=0,x2=-3 B.x1=-1,x2=-4C.x1=0,x2=3, D.x1=2,x2=-13、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )A. B.C. D.4、若m是方程x2+x﹣1=0的根,则2m2+2m+2020的值为( )A.2022 B.2021 C.2020 D.20195、目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到3.92万户,设全市5G用户数年平均增长率为x,则x值为( )A.20% B.30% C.40% D.50%6、某商品售价准备进行两次下调,如果每次降价的百分率都是x,经过两次降价后售价由298元降到了268元,根据题意可列方程为( ).A. B.C. D.7、矩形ABCD的一条对角线长为6,边AB的长是方程的一个根,则矩形ABCD的面积为( )A. B.12 C. D.或8、用配方法解方程,则方程可变形为( )A. B. C. D.9、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m-n的值是( )A.-10 B.10 C.-6 D.610、一元二次方程的两个根是 ( )A., B., C., D.,第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x,则可列方程为________.2、小华在解方程x2 = 3x时,只得出一个根x = 3,则被他漏掉的一个根是x =_______ 3、已知关于的一元二次方程(a,b,c为常数,)的解为,则方程的解为__________.4、关于x的一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为_______.5、已知关于x的一元二次方程的一个根是2,则k的值是______.三、解答题(5小题,每小题10分,共计50分)1、近日,广西南宁苏爷爷自家果园的上千斤皇帝柑发生蓝变(即果皮白皮层变蓝),无法正常售卖,他决定将这些皇帝柑免费寄给科研人员.网友看到苏爷爷的故事,纷纷订购表示支持.已知苏爷爷自家果园的皇帝柑有两种类型在售,一种是实惠装中型果实(简称“中果”),一种是豪华装大型果实(简称“大果”).(1)网友小张买了2箱中果,1箱大果,花了116元;网友小李买了1箱中果,2箱大果,花了124元.求每箱中果和大果的售价分别是多少元?(2)在(1)的条件下,正常情况平均每周可销售30箱大果.但为了减少库存,苏爷爷决定对大果降价销售,经调查发现,一箱大果的售价每降低2元,大果的销量每周可增加5箱,如果大果每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%.求每箱大果的售价应该降低多少元?2、解方程:(1)(配方法)(2)(公式法)3、解下列方程:(1)x2﹣2x=0;(2)x2+4x﹣8=0.4、用配方法解方程3﹣6x+1=0.5、已知函数y1=x+1和y2=x2+3x+c(c为常数).(1)若两个函数图像只有一个公共点,求c的值;(2)点A在函数y1的图像上,点B在函数y2的图像上,A,B两点的横坐标都为m.若A,B两点的距离为3,直接写出满足条件的m值的个数及其对应的c的取值范围. -参考答案-一、单选题1、A【分析】利用一元二次方程定义进行解答即可.【详解】解:A、是一元二次方程,故此选项符合题意;B、当a=0时,不是一元二次方程,故此选项不合题意;C、含有两个未知数,不是一元二次方程,故此选项不合题意;D、未知数次数为1,不是一元二次方程,故此选项不合题意;故选:A.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2、D【分析】首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,,然后代入一元二次方程ax2-bx+c=3中即可求解.【详解】解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,∴一元二次方程ax2+bx+c=3有一个根为1,∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,∴,,∵ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即,∴,∴,∴或,解得:.故选:D.【点睛】此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.3、C【分析】设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.【详解】解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,依题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.4、A【分析】根据题意,将m代入方程中,得到,再将整理成,利用整体代入法解题即可.【详解】解:是方程的根,,∴故选A.【点睛】本题考查一元二次方程的解、代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.5、C【分析】先用含x的代数式表示出2021年底5G用户的数量, 然后根据2021年底5G用户数为3.92万户列出关于x的方程,解方程即得答案.【详解】解:设全市5G用户数年平均增长率为x,根据题意,得: ,整理得:,∴,解得:x1=0.4=40%,x2= −2.4(不合题意,舍去).故选:C.【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.6、D【分析】根据该商品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意得:298(1-x)2=268.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7、D【分析】先求的两个根再根据矩形的性质,用勾股定理求得另一边长或,计算面积即可.【详解】∵,∴(x-2)(x-5)=0,∴∴另一边长为=或=,∴矩形的面积为2×=或5×=5,故选D.【点睛】本题考查了矩形的性质,勾股定理,一元二次方程的解法,熟练解方程,灵活用勾股定理是解题的关键.8、D【分析】根据配方法解一元二次方程步骤变形即可.【详解】∵∴∴∴∴故选:D.【点睛】本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.9、D【分析】根据一元二次方程x2+mx+n=0的两个实数根分别为x1=2、x2=4结合根与系数的关系,分别求出m和n的值,最后代入m-n即可解答.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2、x2=4,∴x1+x2=﹣m=-2+4,解得:m=﹣2,x1•x2=n=-2×4,解得:n=-8,∴m-n=﹣2-(-8)=6.故选D.【点睛】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系求出m、n的值是解答本题的关键.10、C【分析】分别令和,即可求出该方程的两个根.【详解】解:由可知:或,方程的解为:,故选:C.【点睛】本题主要是考查了一元二次方程的求解,一定要熟练掌握两项乘积为的一元二次方程的求解:令每一项都为0,即可求出该方程的两个根.二、填空题1、【分析】根据题意可得4月份的参观人数为人,则5月份的人数为,根据5月份的参观人数增加到12.1万人,列一元二次方程即可.【详解】根据题意设参观人数的月平均增长率为x,则可列方程为故答案为:【点睛】本题考查了一元二次方程的应用,根据增长率问题列一元二次方程是解题的关键.2、0【分析】根据因式分解法即可求出答案.【详解】解:∵x2=3x,
∴x2-3x=0,
∴,
∴x=0或x-3=0,
∴x1=0,x2=3,
故答案为:0.【点睛】本题考查解一元二次方程,解题的关键是熟练运用因式分解法.3、##【分析】根据一元二次方程解的定义可得令,进而即可求得,即方程的解【详解】解:∵关于的一元二次方程(a,b,c为常数,)的解为,∴方程中,令则,即或解得即的解为故答案为:【点睛】本题考查了一元二次方程解的定义,掌握解的定义,换元是解题的关键.4、9【分析】根据方程有两个相等的实数根得出Δ=0,据此列出关于m的方程,解之即可.【详解】解:∵关于x的一元二次方程x2+6x+m=0有两个相等的实数根,,,,∴Δ=62-4×1×m=0,解得m=9,故答案为:9.【点睛】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.5、-2【分析】知道方程的一根,把x=2代入方程中,即可求出未知量k.【详解】解:将x=2代入一元二次方程x2-x+k=0,可得:4-2+k=0,
解得k=-2,故答案为:-2.【点睛】本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.三、解答题1、(1)每箱中果的售价为36元,每箱大果的售价为44元;(2)每箱大果的售价应该降低4元.【分析】(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据“2箱中果,1箱大果,花了116元; 1箱中果,2箱大果,花了124元”列出二元一次方程组求解即可;(2)根据“每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%”列出方程和不等式求解即可.【详解】解:(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据题意得 解得, 所以,每箱中果的售价为36元,每箱大果的售价为44元;(2)设每箱大果的售价应该降低m元,根据题意得, 解①得,, 解②得, ∴ 所以,每箱大果的售价应该降低4元【点睛】本题本题主要考查了二元一次方程组的应用、一元一次不等式的应用以及一元二次方程的应用,正确找出等量关系是解答本题的关键.2、(1);(2)【分析】(1)利用配方法,首先将常数项移项,再配方,方程两边同时加上一次项系数一半的平方求出即可;(2)利用公式法直接代入求出即可.【详解】(1)(2)∴∴【点睛】本题考查了解一元二次方程,熟练掌握公式法、配方法的解题步骤是解题的关键.3、(1);(2).【分析】(1)利用因式分解法解一元二次方程即可得;(2)利用公式法解一元二次方程即可得.【详解】解:(1),,或,;(2),此方程中的,则,即,所以.【点睛】本题考查了解一元二次方程,熟练掌握方程的解法是解题关键.4、=1+,=1﹣【分析】方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】解:方程移项得:3﹣6x=﹣1,即﹣2x=﹣,配方得:=,开方得:x﹣1=±,解得 =1+,=1﹣.【点睛】本题考查了公式法解一元二次方程,熟练掌握求根公式是解题的关键.5、(1)c=2;(2)当c>5时,m有0个;当c=5时,m有1个;当-1<c<5时,m有2个;当c=-1时,m有3个;当c<-1时,m有4个【分析】(1)只需求出y1=y2时对应一元二次方程有两个相等的实数根的c值即可;(2)根据题意,AB=|m2+2m+c-1|=3,分m2+2m+c-1>0和m2+2m+c-1<0两种情况,利用一元二次方程根的判别式与根的关系求解即可.【详解】解:(1)根据题意,若两个函数图像只有一个公共点,则方程x2+3x+c=x+1有两个相等的实数根,∴△=b2-4ac=22-4(c-1)=0,∴c=2;(2)由题意,A(m,m+1),B(m,m2+3m+c)∴AB=|m2+3m+c-m-1|=|m2+2m+c-1|=3,①当m2+2m+c-1>0时,m2+2m+c-1=3,即m2+2m+c-4=0,△=22-4(c-4)=20-4c,令△=20-4c=0,解得:c=5,∴当c<5时,△>0,方程有两个不相等的实数根,即m有2个;当c=5时,△=0,方程有两个相等的实数根,即m有1个;当c>5时,△<0,方程无实数根,即m有0个;②当m2+2m+c-1<0时,m2+2m+c-1=-3,即m2+2m+c+2=0,△=22-4(c+2)=-4c-4,令△=-4c-4=0,解得:c=-1,∴当c<-1时,△>0,方程有两个不相等的实数根,即m有2个;当c=-1时,△=0,方程有两个相等的实数根,即m有1个;当c>-1时,△<0,方程无实数根,即m有0个;综上,当c>5时,m有0个;当c=5时,m有1个;当-1<c<5时,m有2个;当c=-1时,m有3个;当c<-1时,m有4个.【点睛】本题考查函数图象上点的坐标特征、一元二次方程根的判别式与根的关系、坐标与图形,解答的关键是熟练掌握一元二次方程根的判别式与根的关系:△>0,方程有两个不相等的实数根,△=0,方程有两个相等的实数根,△<0,方程无实数根.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共14页。试卷主要包含了下列命题中,逆命题不正确的是,一元二次方程的二次项系数等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试达标测试,共25页。试卷主要包含了一元二次方程x2﹣x=0的解是,方程x2=4x的解是,下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共15页。试卷主要包含了关于x的一元二次方程,已知关于x的一元二次方程x2﹣,一元二次方程的解为等内容,欢迎下载使用。