搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专题练习练习题(精选)

    2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专题练习练习题(精选)第1页
    2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专题练习练习题(精选)第2页
    2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专题练习练习题(精选)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版第十七章 方差与频数分布综合与测试同步测试题

    展开

    这是一份北京课改版第十七章 方差与频数分布综合与测试同步测试题,共19页。试卷主要包含了一组数据等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、小明同学对数据15,28,36,4□,43进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则统计结果与被涂污数字无关的是(    A.平均数 B.标准差 C.中位数 D.极差2、远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是(  )A.众数是11 B.平均数是12 C.方差是 D.中位数是133、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是(    A.众数 B.中位数 C.平均数 D.方差4、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是(   A.平均数是80 B.众数是60 C.中位数是100 D.方差是205、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是(    A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.46、数字“20211202”中,数字“2”出现的频数是(  )A.1 B.2 C.3 D.47、在2020东京奥运会女子10米气步枪的项目中,杨倩以251.8环的好成绩一举夺冠,为中国体育代表团斩获奥运首金.现将决赛淘汰阶段中国选手杨倩每一轮(两轮之和)的数据进行汇总,并进行一定的数据处理作出以下表格.姓名第1轮第2轮第3轮第4轮第5轮第6轮第7轮总计杨倩20.921.721.020.621.121.320.5147.1根据表格信息可以得到杨倩在决赛淘汰阶段成绩的极差和中位数分别为多少(    A.1.1,20.6 B.1.2,20.6 C.1.2,21.0 D.1.1,21.38、某体育场大约能容纳万名观众,在一次足球比赛中,上座率为.估一估,大约有多少名观众观看了比赛?(    A. B. C.9、一组数据:1,3,3,4,5,它们的极差是(    A.2 B.3 C.4 D.510、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是(    A.2 B.11.1% C.18 D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若式子的值为非负数,则满足条件的所有整数a的方差是_____2、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是,则在本次训练中,运动员__________的成绩更稳定.3、从甲、乙两块试验田各随机抽取100株麦苗测量高度(单位:cm),计算它们的平均数和方差,结果为:.则麦苗长势比较整齐的试验田是________(填“甲”或“乙”).4、甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为_____(填>或<).5、甲乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为2.1,乙的方差是1,那么成绩较稳定的是_________(填“甲”或“乙”).三、解答题(5小题,每小题10分,共计50分)1、某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:成绩78910人数1955乙组成绩统计图
     根据上面的信息,解答下列问题:(1)甲组的平均成绩为______分,______,甲组成绩的中位数是______,乙组成绩的众数是______;(2)若已经计算出甲组成绩方差为0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?2、第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.为了考查学生对冬奥知识的了解程度,某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动.为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整:(收集数据)从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲:40,60,60,70,60,80,40,90,100,60,60,100,80,60,70,60,60,90,60,60乙:70,90,40,60,80,75,90,100,75,50,80,70,70,70,70,60,80,50,70,80(整理、描述数据)按如表分数段整理、描述这两组样本数据:分数(分)40≤x<6060≤x<8080≤x<100甲学校2人12人6人乙学校3人10人7人(说明:成绩中优秀为80≤x≤100,良好为60≤x<80,合格为40≤x<60)(分析数据)两组样本数据的平均分、中位数、众数如表所示:学校平均分中位数众数甲学校686060乙学校71.570a(得出结论)(1)(分析数据)中,乙学校的众数a   (2)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是    校的学生;(填“甲”或“乙”)(3)根据抽样调查结果,请估计乙校学生在这次竞赛中的成绩是优秀的人数;(4)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(从平均分、中位数、众数中至少选两个不同的角度说明推断的合理性)3、实行垃圾分类是保护生态环境的有效措施.为了解社区居民掌握垃圾分类知识的情况,增强居民环保意识,某校环境保护兴趣小组从AB两个小区各随机抽取20位居民进行垃圾分类知识测试(测试满分为10分),现将测试成绩进行整理、描述和分析如下:A小区20位居民的测试成绩如下:6,7,7,4,8,10,9,9,7.6,8,6,5,8,8,9,9,7,8,5B小区20位居民测试成绩的条形统计图如下:AB小区抽取的居民测试成绩统计表如下:小区AB平均数7.3a中位数7.5b众数c9方差2.413.51根据以上信息,回答下列问题:(1)填空:a      b      c      (2)请结合数据,分析本次测试中两个小区居民对垃圾分类知识的了解情况,并提出一条合理化建议.4、甲、乙两人在5次打靶测试中命中的环数如下: 平均数众数中位数方差8 80.4 9 3.2甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写表格;(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?5、甲、乙两支篮球队进行了5场比赛,比赛成绩(整数)绘制成了折线统计图(如图,实、虚线未标明球队):(1)填写下表: 平均数中位数方差     91     90     70.8(2)如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、方差以及获胜场数这三个方面分别进行简要分析,你认为选派哪支球队参赛更有可能取得好成绩? -参考答案-一、单选题1、C【分析】利用中位数、平均数、标准差和极差的定义对各选项进行判断.【详解】解:五个数据从小到大排列为:15,28,36,4□,43或15,28,36,43,4□,∴这组数据的平均数、标准差和极差都与被涂污数字有关,而两种排列方式的中位数都是36,∴计算结果与被涂污数字无关的是中位数.故选:C.【点睛】本题考查了中位数、平均数、标准差和极差,解决本题的关键是掌握中位数、平均数、标准差和极差的定义.2、D【分析】根据中位数、平均数、众数和方差的定义计算即可得出答案.【详解】解:A.数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,故选项A不符合题意;B. =(11+10+11+13+11+13+15)÷7=12,即平均数是12,故选项B不符合题意; C.S2=×[(10-12)2+(11-12)2×3+(13-12)2×2+(15-12)2]=,故选项C不符合题意;D.将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,故选项D符合题意;故选:D.【点睛】本题主要考查了中位数、平均数、众数和方差,熟练掌握中位数、众数的定义和方差、平均数的计算公式是解题的关键.3、D【分析】根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解【详解】解:由题意得:原中位数为3,原众数为3,原平均数为3,原方差为1.8;去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;∴统计量发生变化的是方差;故选D【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.4、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为方差为观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.5、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,
    故选:B【点睛】此题主要考查了频率,关键是掌握计算方法.6、D【分析】根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.【详解】解:数字“20211202”中,共有4个“2”,∴数字“2”出现的频数为4,故选:D.【点睛】题目主要考查频数的定义,理解频数的定义是解题关键.7、C【分析】根据极差和中位数的求解方法,求解即可,极差是一组数据中最大数减去最小数,中位数为是指一组数据从小到大排列,位于中间的那个数,数据个数为奇数时,中位数为中间的数,数据个数为偶数时,中位数为中间两数的平均值.【详解】解:成绩从小到大依次为:极差为中位数为故选:C【点睛】此题考查了极差和中位数的计算,解题的关键是掌握极差和中位数的有关概念.8、B【分析】根据体育场的容量×上座率计算即可.【详解】解:∵某体育场大约能容纳万名观众,上座率为∴观众观看这一次足球比赛人数为:30000×68%=20400人,与20000接近.故选:B.【点睛】本题考查频数频率与总数的关系,掌握频数=总数×频率是解题关键.9、C【分析】根据极差的定义,即一组数据中最大数与最小数之差计算即可;【详解】极差是故选C.【点睛】本题主要考查了极差的计算,准确计算是解题的关键.10、A【分析】根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.【详解】解:CoronaVriusDisease中共有18个字母,其中r出现2次,∴频数是2,故选A.【点睛】本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.二、填空题1、##【分析】先求出为非负数时所有整数的值,再求出其方差即可.【详解】解:由题意可得,解得的所有整数值为,0,1,2.该组数的平均数为:方差为:故填【点睛】此题将分式的意义、二次根式成立的条件和方差相结合,考查了同学们的综合运用数学知识能力.2、乙【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵∴乙运动员的成绩更稳定;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、甲【分析】根据题意可得:,即可求解.【详解】解:∵∴甲试验田麦苗长势比较整齐.故答案为:甲【点睛】本题主要考查了利用方差判断稳定性,熟练掌握一组数据方差越小越稳定是解题的关键.4、>【分析】根据数据的波动越小,方差越小,越稳定,反之数据的波动越大,方差越大,再结合图象即可填空.【详解】由图可知甲的数据波动相对较大,乙的数据波动相对较小.∴甲的方差大于乙的方差.故答案为:>.【点睛】本题考查根据数据的波动程度判断方差的大小.掌握数据波动程度和方差的关系是解答本题的关键.5、乙【分析】根据方差的意义进行判断即可,若两组数据的平均数相同,则方差小的更稳定.【详解】平均环数相等,其中甲所得环数的方差为2.1,乙的方差是1,成绩较稳定的是乙故答案为:乙【点睛】本题考查了方差的意义,理解方差的意义是解题的关键.三、解答题1、(1)8.7,3,8.5,8;(2)乙组成绩的方差为0.75,乙组的成绩更加稳定.【分析】(1)根据数据平均数的计算方法可得平均数;用总人数减去其他成绩的人数即为m的值;根据中位数(一组数据从小到大排序后最中间的数)和众数(一组数据中出现次数最多的)的定义即可确定甲组成绩的中位数,乙组成绩的众数;(2)先求出乙组数据的平均数,再根据方差公式求出乙组方差,然后进行比较,即可得出答案.【详解】解:(1)平均成绩为:甲组成绩一共有20人,从小到大最中间为8和9,则中位数为乙组成绩中出现次数最多的为8,则众数为8,故答案为:8.7,3,8.5,8;(2)∴乙组的成绩更加稳定.【点睛】题目主要考查平均数、中位数、众数的定义、方差的算法及数据的稳定性判断,理解定义及方差的算法是解题关键.2、(1)70;(2)甲;(3)140人;(4)乙学校成绩较好,理由见详解【分析】(1)由众数的定义解答即可;(2)可从中位数的角度分析即可;(3)用总人数乘以乙校学生在这次竞赛中的成绩是优秀的人数占被调查人数的比例即可;(4)根据平均分和中位数乙校高于甲校即可判断.【详解】解:(1)乙校的20名同学的成绩中70分出现的次数最多,∴乙学校的众数a=70,故答案为:70(2)甲校的中位数为60,小明的同学的成绩高于此学校的中位数,∴小明是甲校的学生;故答案为:甲.(3)400×=140(人)∴估计乙校学生在这次竞赛中的成绩是优秀的人数有140人.(4)∵乙校的平均分高于甲校的平均分,且乙校的中位数70高于甲校的中位数,说明乙校分数不低于70分的人数比甲多,∴乙校的成绩较好.【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.3、(1)7.3、7.5、8;(2)A小区测试成绩波动幅度小;建议:加强对B小区保护生态环境意识(答案不唯一).【分析】(1)根据平均数、众数和中位数的定义求解即可;(2)根据平均数、中位数、方差的意义求解即可.【详解】解:(1)A小区20位居民的测试成绩中8分出现次数最多,有5次,A小区的众数c=8,有统计图数据可知B小区20位居民的测试成绩的平均数a=7.3,B小区一共有20位居民参加测试,B小区20位居民的测试成绩的中位数为第10位和第11位成绩的平均数,而第10位的成绩为7,第11位的成绩为8,B小区20位居民的测试成绩的中位数b=7.5,故答案为:7.3、7.5、8;(2)比较AB小区20位居民的测试成绩知,两小区居民测试成绩的平均数、中位数均相等,而A小区测试成绩的方差小于B小区,A小区测试成绩波动幅度小;建议:加强对B小区保护生态环境意识(答案不唯一).【点睛】本题主要考查了求平均数,中位数和众数,以及平均数,中位数,众数和方差的意义,熟知相关知识是解题的关键.4、(1)见解析;(2)见解析【分析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=(5+9+7+10+9)=8,把这些数从小到大排列5,7,9,9,10,则乙的中位数为9.故填表如下: 平均数众数中位数方差8880.48993.2故答案为:8,8,9; (2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.5、(1)90,28.4,87;(2)选派甲球队参赛更能取得好成绩【分析】(1)根据统计图可得甲队5场比赛的成绩,然后把5场比赛的成绩求和,再除以5即可得到平均数;根据中位数定义:把所用数据从小到大排列,取位置处于中间的数可得中位数;根据方差公式S2[(x12+(x22+…+(xn2],进行计算即可;(2)利用表格中的平均数和方差进行比较,然后根据条形图可得甲乙两队各胜多少场,再进行比较即可.【详解】解:(1)甲的平均数是:×(82+86+95+91+96)=90;甲队的方差是:×[(82﹣90)2+(86﹣90)2+(95﹣90)2+(91﹣90)2+(96﹣90)2]=28.4;把乙队的数从小到大排列,中位数是87; 平均数中位数方差909128.4908770.8故答案为:90,28.4,87;(2)从平均分来看,甲乙两队平均数相同;从方差来看甲队方差小,乙队方差大,说明甲队成绩比较稳定;从获胜场数来看,甲队胜3场,乙队胜2场,说明甲队成绩较好,因此选派甲球队参赛更能取得好成绩.【点睛】本题考查统计图、平均数、中位数,以及方差,关键是掌握方差公式S2[(x12+(x22+…+(xn2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试一课一练:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试一课一练,共20页。试卷主要包含了篮球队5名场上队员的身高等内容,欢迎下载使用。

    2021学年第十七章 方差与频数分布综合与测试课堂检测:

    这是一份2021学年第十七章 方差与频数分布综合与测试课堂检测,共19页。

    北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试,共20页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map