初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课时练习
展开京改版八年级数学下册第十七章方差与频数分布课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、水稻科研人员为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取60株,分别量出每株高度,发现两组秧苗的平均高度和中位数均相同,甲、乙的方差分别是3.6,6.3,则下列说法正确的是( )
A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐
C.甲、乙出苗一样整齐 D.无法确定甲、乙出苗谁更整齐
2、在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是( )
A.7 B.8 C.9 D.10
3、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是( )
A.该班共有学生60人
B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内
C.某同学身高155厘米,那么班上恰有10人比他矮
D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%
4、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )
A.甲比乙稳定 B.乙比甲稳定
C.甲与乙一样稳定 D.无法确定
5、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是( )
甲 | 2 | 6 | 7 | 7 | 8 |
乙 | 2 | 3 | 4 | 8 | 8 |
A.甲、乙的众数相同 B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
6、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为( )
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
质量(千克) | 44 | 51 | 57 | 47 | 48 | 50 | 49 | 53 | 49 | 52 |
A.500千克,7500元 B.490千克,7350元
C.5000千克,75000元 D.4850千克,72750元
7、在对一组样本数据进行分析时,小华列出了方差的计算公式S2=,下列说法错误的是( )
A.样本容量是5 B.样本的中位数是4
C.样本的平均数是3.8 D.样本的众数是4
8、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为,,,则成绩波动最小的班级( )
A.甲 B.乙 C.丙 D.无法确定
9、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有( )
A.32人 B.40人 C.48人 D.50人
10、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( )
| 甲 | 乙 | 丙 | 丁 |
方差 | 3.6 | 3.2 | 4 | 4.3 |
A.甲组 B.乙组 C.丙组 D.丁组
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小亮是一位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频率是________.
2、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:=84, =83.2,=13.2, =26.36,由此学校决定让甲去参加比赛,理由是_______.
3、某舞蹈队8名队员的身高(单位:厘米)如下:163,164,164,165,165,166,166,167.计算这些队员的身高的方差记为S12,这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,再次计算所得身高的方差记为S22.则S12与S22的大小关系是___(选填“>”“<”或“=”).
4、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为=38,=10,则______同学的数学成绩更稳定.
5、南京2021年11月1号的最高气温为22℃,最低气温为12℃,该日的气温极差为 __.
三、解答题(5小题,每小题10分,共计50分)
1、为了解八年级学生的数学知识技能水平,教育局组织了一次数学知识竞赛,满分为100分.为掌握甲、乙两校学生本次竞赛的情况,李老师分别从两个学校的成绩中都随机抽取20个进行整理和分析.李老师将抽取的成绩用x表示,分为A、B、C、D、E五个等级(A:;B:;C:;D:;E:),已知部分信息如下:
甲校抽取的20名同学的成绩(单位:分)为:91,83,92,80,79,82,82,77,82,80,75,63,56,85,91,70,82,76,64,82
已知乙校抽取的成绩中,有1名同学的成绩不超过60分.
乙校抽取的学生成绩扇形统计图
甲、乙两校抽取的学生成绩数据统计表
班级 | 甲校 | 乙校 |
平均数 | 78.6 | 78.4 |
中位数 | b | 80 |
众数 | c | 80 |
根据以上信息,解答下列问题:
(1)直接写出上述图表中a、b、c的值: , , ;
(2)不用计算,根据统计表,判断哪个学校的成绩好一些?并说明理由;
(3)若甲、乙两校的八年级学生人数分别为420人、450人,且都参加了此次知识竞赛,估计本次竞赛中,两个学校共有多少人的成绩达到A级?
2、 “西安年,最中国”.西安某校九年级1班数学兴趣小组就“最想去的西安市旅游景点”,随机调查了本校部分学生,A﹣临潼秦始皇帝陵博物馆(兵马俑),B﹣大唐芙蓉园,C﹣西安城墙、D﹣陕西历史博物馆,E﹣大雁塔.要求每位同学选择且只能选择一个最想去的景点.下面是根据调查结果进行数据整理后绘制出的不完整统计图,请根据图中信息,解答下列问题:
(1)补全条形统计图,则扇形统计图中表示最想去景点C的扇形圆心角的度数为____度;
(2)所抽取的部分学生的众数落在______组内;
(3)若该校共有1800名学生,请估计最想去景点D的学生人数.
3、在疫情防控期间,某市防控指挥部想了解各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们志愿服务的时间进行了统计,整理并绘制成如下的统计表和不完整的统计图.
A | a | |
B | 10 | |
C | 16 | |
D | 20 |
(1)本次被抽取的教职工共有 名;
(2)表中a = ,扇形统计图中“C”部分所占百分比为 %;
(3)若该市共有30 000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?
4、2021年4月13日,日本政府召开内阁会议正式决定,将福岛第一核电站超过100万公吨的核污水经过滤并稀释后排入大海,这一决定遭到包括福岛民众、日本渔民乃至国际社会的谴责和质疑.鉴于此次事件的恶劣影响,某校为了强化学生的环保意识,校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,复赛成绩如图所示.
根据以上信息解答下列问题:
(1)高中代表队五名学生复赛成绩的中位数为 分;
(2)分别计算初中代表队、高中代表队学生复赛成绩的平均数;
(3)已知高中代表队学生复赛成绩的方差为20,请计算初中代表队学生复赛成绩的方差,并结合两队成绩的平均数和方差分析哪个队的复赛成绩较好.
5、疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:
(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D:95≤x≤100)
七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82
八年级10名学生的成绩在C组中的数据是:94,90,92
七、八年级抽取的学生竞赛成绩统计表
年级 | 平均数 | 中位数 | 众数 | 方差 |
七年级 | b | c | d | 52 |
八年级 | 92 | 93 | 100 | 50.4 |
根据以上信息,解答下列问题:
(1)这次比赛中 年级成绩更平衡,更稳定;
(2)直接写出上述a、b、c的值:a= ,b= ,c= ;d=
(3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的人数
-参考答案-
一、单选题
1、A
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵甲、乙的方差的分别为3.6、6.3,
∴甲的方差小于乙的方差,
∴甲秧苗出苗更整齐.
故选:A.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、A
【分析】
每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数.
【详解】
解:第4小组的频数是40−(6+5+15+7)=7,
故选:A.
【点睛】
本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.
3、B
【分析】
由两幅统计图的数据逐项计算判断即可.
【详解】
解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;
根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;
根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;
根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;
故选B.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
4、C
【分析】
先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.
【详解】
解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,
乙5天制作的个数分别为10、15、10、20、15,
∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,
∴甲、乙制作的个数稳定性一样,
故选:C.
【点睛】
本题主要考查了利用方差进行决策,准确分析判断是解题的关键.
5、D
【分析】
根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.
【详解】
解:A.甲的众数为7,乙的众数为8,故此项错误;
B.甲的中位数为7,乙的中位数为4,故此项错误;
C.甲的平均数为,乙的平均数为,甲的平均数>乙的平均数, 故此项错误;
D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;
故选:D.
【点睛】
此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.
6、C
【分析】
先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.
【详解】
解:选出的10棵油桃树的平均产量为:
=50(千克),
估计100棵油桃树的总产量为:50×100=5000(千克),
按批发价的总收入为:15×5000=75000(元).
故选C.
【点睛】
本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.
7、D
【分析】
先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.
【详解】
解:
由方差的计算公式得:这组样本数据为,
则样本的容量是5,选项A正确;
样本的中位数是4,选项B正确;
样本的平均数是,选项C正确;
样本的众数是3和4,选项D错误;
故选:D.
【点睛】
题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.
8、C
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵,,,
∴,
∴成绩波动最小的班级是:丙班.
故选:C.
【点睛】
此题主要考查了方差的意义,正确理解方差的意义是解题关键.
9、D
【分析】
根据频率=频数总数,求解即可.
【详解】
解:根据频率=频数总数,即总数=频数频率,
则参加比赛的同学共有40÷0.8=50(人),
故选:D.
【点睛】
本题考查了频数与频率,记住公式:频率=频数总数是解题的关键.
10、B
【分析】
由平均数相同,根据方差越小越稳定可得出结论.
【详解】
解:∵4.3>4>3.6>3.2
∴,
∵四个小组的平均分相同,
∴乙组各成员实力更平均,
选择乙组代表年级参加学校决赛.
故选择B.
【点睛】
本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.
二、填空题
1、0.75
【分析】
根据频率=频数÷总数进行求解即可.
【详解】
解:∵小亮在10分钟之内罚球20次,共罚进15次,
∴小亮点球罚进的频率是,
故答案为:0.75.
【点睛】
本题主要考查了根据频数求频率,熟知频率=频数÷总数是解题的关键.
2、甲的平均成绩高,且甲的成绩较为稳定
【分析】
因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.
【详解】
∵=84, =83.2,=13.2, =26.36,
∴ ,,
∴甲的平均成绩高,且甲的成绩较为稳定;
故答案为:甲的平均成绩高,且甲的成绩较为稳定.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
3、=
【分析】
根据方差的计算公式分别求出S12,S22,再比较即可.
【详解】
解:舞蹈队8名队员身高的平均数为:×(163+164×2+165×2+166×2+167)=165,
S12=×[(163−165)2+2×(164−165)2+2×(165−165)2+2×(166−165)2+(167−165)2]=1.5;
这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,所得数据为:166,167,167,168,168,169,169,170,
这组新数据的平均数为:×(166+167×2+168×2+169×2+170)=168,
S22=×[(166−168)2+2×(167−168)2+2×(168−168)2+2×(169−168)2+(170−168)2]=1.5;
∴S12=S22,
故答案为:=.
【点睛】
本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1−)2+(x2−)2+…+(xn−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
4、乙
【分析】
根据平均数相同时,方差越小越稳定可以解答本题.
【详解】
解:甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为,,
,
乙同学的数学成绩更稳定,
故答案为:乙.
【点睛】
本题考查方差,解题的关键是明确方差越小越稳定.
5、10℃
【分析】
用最高温度减去最低温度即可.
【详解】
解:该日的气温极差为22﹣12=10(℃).
故答案为:10℃.
【点睛】
本题考查了有理数减法,解题的关键是了解有理数减法法则在生活中运用方法,难度不大.
三、解答题
1、(1),,;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)108人
【分析】
(1)B等的人数=20-20×(10+10+35)-1=8,
于是,可以确定a值;先将数据排序,计算第10个,11个数据的平均数即可得到b;确定出现次数最多的数据即可;
(2)比较平均数,中位数,众数的大小,判断即可;
(3)甲校约有人,乙校约有人,求和即可.
【详解】
(1)∵B等的人数=20-20×(10+10+35)-1=8,
∴,
∴a=40;
∵第10个,11个数据是80,82,
∴b=;
∵82出现次数最多,是5次,
∴众数c=82;
故答案为:40,81,82;
(2)甲校的成绩好一些,
因为甲校成绩的平均数、众数和中位数都高于乙校,
所以甲校的成绩要好一些;
(3)由题意,甲校约有人,乙校约有人,
∴两校共约有63+45=108人的成绩达到A级.
【点睛】
本题考查了扇形统计图,众数,平均数,中位数,样本估计总体的思想,熟练掌握三数的定义,并灵活计算是解题的关键.
2、(1)图见解析,36;(2);(3)估计最想去景点的学生人数为360人.
【分析】
(1)先根据景点的条形统计图和扇形统计图信息求出调查的学生总人数,从而可得最想去景点的学生人数,由此补全条形统计图即可;再利用乘以最想去景点的学生所占百分比即可得其圆心角的度数;
(2)根据众数的定义(一组数据中出现次数最多的那个数据)求出所抽取的部分学生的众数,由此即可得出答案;
(3)利用1800乘以最想去景点的学生所占百分比即可得.
【详解】
解:(1)调查的学生总人数为(人),
则最想去景点的学生人数为(人),
补全条形统计图如下:
,
即扇形统计图中表示最想去景点的扇形圆心角的度数为36度,
故答案为:36;
(2)因为最想去景点的学生人数最多,
所以所抽取的部分学生的众数落在组内,
故答案为:;
(3)(人),
答:估计最想去景点的学生人数为360人.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联、众数等知识点,熟练掌握统计调查的相关知识是解题关键.
3、(1)50;(2)4,32;(3)21600
【分析】
(1)由B等级的人数及其所占百分比即可求出被调查的总人数;
(2)用总人数减去B、C、D的人数即可得出a的值,用C等级人数除以被调查总人数即可得出其对应百分比;
(3)用总人数乘以样本中C、D人数所占比例即可.
【详解】
解:(1)本次被抽取的教职工共有10÷20%=50(名),
故答案为:50;
(2)a=50−(10+16+20)=4,
扇形统计图中“C”部分所占百分比为×100%=32%,
故答案为:4,32;
(3)志愿服务时间多于60小时的教职工大约有30000×=21600(人).
【点睛】
此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息.
4、(1)95;(2)高中代表队的平均数为95分,初中代表队的平均数为90分;(3)初中代表队学生复赛成绩的方差为40,高中代表队成绩较好.
【分析】
(1)根据中位数的定义求解即可;
(2)根据平均数的定义求解即可;
(3)根据方差的定义求出初中代表队学生复赛成绩的方差,然后根据平均数和方差越小越稳定判断即可.
【详解】
解:(1)五个人的成绩从小到大排列为:90,90,95,100,100,
一共有5个数,第3个数为中位数,
∴中位数是95;
(2)高中代表队的平均数=(分),
初中代表队的平均数=(分);
(3)初中代表队学生复赛成绩的方差=,
∵,
∴高中代表队成绩较好.
【点睛】
此题考查了平均数,中位数和方差及其意义,解题的关键是熟练掌握平均数,中位数和方差的求解方法.
5、(1)八;(2)40;91.4;93;96;(3)840人
【分析】
(1)根据方差的意义求解即可;
(2)先求出八年级学生成绩落在C组人数所占百分比,再根据百分比之和为1求解可得a的值,然后根据平均数、中位数和众数的概念求解即可;
(3)用总人数乘以样本中成绩优秀(x≥90)的八年级学生人数对应的百分比即可.
【详解】
(1)∵七年级成绩的方差为52,八年级成绩的方差为50.4,
∴八年级成绩的方差小于七年级成绩的方差,
∴八年级成绩更平衡,更稳定;
故答案为:八;
(2)∵八年级学生成绩落在C组人数所占百分比为3÷10×100%=30%,
∴a%=1-(20%+10%+30%)=40%,即a=40;
七年级的平均数=
将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,
则这组数据的中位数
七年级的成绩中96出现次数最多,所以众数d=96,
故答案为:40;91.4;93;96;
(3)估计参加此次调查活动成绩优秀(x≥90)的八年级学生人数是1200×(1-20%-10%)=840(人).
【点睛】
考查方差、中位数、众数的意义和计算方法,扇形统计图,从统计图中获取数量之间的关系是解决问题的关键.
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共22页。试卷主要包含了在频数分布表中,所有频数之和,在一次射击训练中,甲,在一次投篮训练中,甲,某校九年级等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试巩固练习: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试巩固练习,共22页。试卷主要包含了一组数据a-1,在一次投篮训练中,甲等内容,欢迎下载使用。
2021学年第十七章 方差与频数分布综合与测试课后作业题: 这是一份2021学年第十七章 方差与频数分布综合与测试课后作业题,共21页。试卷主要包含了某校九年级,已知一组数据的方差s2=[等内容,欢迎下载使用。