2021学年第十七章 方差与频数分布综合与测试课堂检测
展开
这是一份2021学年第十七章 方差与频数分布综合与测试课堂检测,共19页。
京改版八年级数学下册第十七章方差与频数分布综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.42、在“5•18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是( )A.调查的方式是普查B.该街道约有18%的成年人吸烟C.该街道只有820个成年人不吸烟D.样本是180个吸烟的成年人3、在频数分布表中,所有频数之和( )A.是1 B.等于所有数据的个数C.与所有数据的个数无关 D.小于所有数据的个数4、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2= [(x188)2+(x288)2+…+(x888)2],以下说法不一定正确的是( )A.育才中学参赛选手的平均成绩为88分B.育才中学一共派出了八名选手参加C.育才中学参赛选手的中位数为88分D.育才中学参赛选手比赛成绩团体总分为704分5、甲、乙两位同学连续五次的数学成绩如下图所示:下列说法正确的是( )A.甲的平均数是70 B.乙的平均数是80C.S2甲>S2乙 D.S2甲=S2乙6、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( )组.A.10 B.9 C.8 D.77、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A.众数 B.中位数 C.平均数 D.方差8、在频数分布直方图中,下列说法正确的是( )A.各小长方形的高等于相应各组的频率B.各小长方形的面积等于相应各组的频数C.某个小长方形面积最小,说明落在这个组内的数据最多D.长方形个数等于各组频数的和9、一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是( )A.众数 B.平均数 C.中位数 D.方差10、下列说法正确的是( )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据的平均数是4,则这组数据的方差是_________.2、若整数1至50的方差为,整数51至100的方差为,则与的大小关系是__________.3、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg种子中发芽的大约有_______kg.4、对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的______,方差则反映一组数据在平均数左右的______,因此从平均数看或从方差看,各有长处.5、已知一组数据,,,它们的平均数是,则______,这一组数据的方差为______.三、解答题(5小题,每小题10分,共计50分)1、某校随机抽取部分学生,对“学习习惯”进行问卷调查.设计的问题:对自己做错的题目进行整理、分析、改正;答案选项为:A.很少;B.有时;C.常常;D.总是.将调查结果的数据进行了整理、绘制成如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)填空:a= %,b= %;(2)请你补全条形统计图;(3)若该校有2000名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生各有多少名?2、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:(1)本次调查的学生共有多少人;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人?3、为了遏制新型冠状病毒疫情的蔓延势头,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.(1)本次调查的人数有多少人?(2)请补全条形图,并求出“在线答疑”在扇形图中的圆心角度数;(3)若全校学生共有2000人,请你估计该校学生对“在线阅读”感兴趣共有多少人?4、一个口袋中有10个黑球和若干个白球,从口袋中随机摸出一球,记下其颜色后再把它放回口袋中摇匀,重复上述过程,共试验100次,其中75次摸到白球,估计袋中共有多少球?5、为了培养学生的数学学习兴趣,现从学校八、九年级中各抽取10名学生的数学竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:),下面给出了部分信息:八年级抽取的10名学生的竞赛成绩是:;九年级抽取的10名学生的竞赛成绩是:;八、九年级抽取的学生竞赛成绩统计表年级平均分中位数众数方差八年级9189.5n45.2九年级91m9339.2请根据相关信思,回答以下问题;(1)直接写出表格中m,n的值并补全九年级抽取的学生数学竞赛成绩频数分布直方图;(2)根据以上数据,你认为该校八、九年级中哪个年级学生数学竞赛成绩较好?请说明理由(一条由即可);(3)该校八年级有600人,九年级有800人参加了此次竞赛活动,请估计参加此次竞赛活动成绩优秀的学生人数是多少. -参考答案-一、单选题1、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,
故选:B.【点睛】此题主要考查了频率,关键是掌握计算方法.2、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,故C选项错误;样本是1000个成年人是否吸烟,故D选项错误;本地区约有18%的成年人吸烟是对的,故B选项正确.故选:B.【点睛】本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键.3、B【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解.【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确 ;B. 频数之和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关 ,故选项C不正确;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确.故选择B.【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键.4、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S2= [(x1−88)2+(x2−88)2+…+(x8−88)2],∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.5、D【分析】根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案【详解】由条形统计图可知,甲的平均数是,故A选项不正确;乙的平均数是,故B选项不正确;甲的方差为,乙的方差为,故C选项不正确,D选项正确;故选D.【点睛】本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.6、A【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【详解】解:145-50=95,
95÷10=9.5,
所以应该分成10组.
故选A.【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.7、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.8、B【分析】根据频数直方图的定义逐一判断即可得答案.【详解】在频数分布直方图中,各小长方形的高等于频数与组距的比值,故A选项错误,在频数分布直方图中,各小长方形的面积等于相应各组的频数,故B选项正确, 在频数分布直方图中,某个小长方形面积最小,说明落在这个组内的数据最少,故C选项错误,在频数分布直方图中,各组频数的和等于各小长方形的高的和,故D选项错误,故选:B.【点睛】本题考查频数直方图,准确理解频数直方图中几个等量关系是解题关键.9、A【分析】依据平均数、中位数、众数、方差的定义即可得到结论.【详解】解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;故选:A.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.10、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.二、填空题1、【分析】先根据平均数的定义求出x的值,再利用方差的定义列式计算即可.【详解】解:因为数据4,3,6,x的平均数是4,
可得:,
解得:x=3,
方差为:=,故答案为:.【点睛】本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.2、【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:整数51至100是整数1至50的每一个数都加上50所得,一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,波动程度不变,方差不变,则.故答案为:.【点睛】本题考查方差的意义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.3、850【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.85左右,据此求出1000kg种子中大约有多少kg种子是发芽的即可.【详解】解:∵大量重复试验发芽率逐渐稳定在0.85左右,∴1000kg种子中发芽的种子的质量是:1000×0.85=850(kg)故答案为:850.【点睛】此题主要考查了频率的应用,解题的关键是根据题意列出式子进行求解.4、一般水平 波动大小 【分析】根据平均数和方差的意义进行回答即可.【详解】解:平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,故答案为:一般水平;波动大小【点睛】本题考查了平均数和方差的区别,熟练掌握平均数和方差的意义是解答本题的关键.5、, 【分析】先根据平均数的定义确定出的值,再根据方差的计算公式计算即可.【详解】解:数据 的平均数是,,,这组数据的方差是:,故答案为:2,.【点睛】此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.三、解答题1、(1)12,36;(2)见解析;(3)720人【分析】(1)首先计算出抽查的学生总数,然后再计算a、b的值即可;(2)计算出“常常”所对的人数,然后补全统计图即可;(3)利用样本估计总体的方法计算即可.【详解】解:(1)调查总人数:(人),,,故答案为:12,36;(2)“常常”所对的人数:200×30%=60(人),补全统计图如图所示:;(3)2000×30%=600(人),2000×36%=720(人),答:“常常”对错题进行整理、分析、改正的有600人,“总是”对错题进行整理、分析、改正的有720人.【点睛】本题考查条形统计图与扇形统计图的综合运用,熟练掌握抽样的各项数目、各项百分比、总数、各项圆心角及整体的各项数目、各项百分比、总数等的计算方法是解题关键.2、(1)人;(2)画图见解析;(3)人【分析】(1)由喜欢足球的有100人,占比25%,列式,再计算即可得到答案;(2)分别求解喜欢排球的占比为: 喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,再补全图形即可;(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.【详解】解:(1)由喜欢足球的有100人,占比25%,可得:本次调查的学生共有人,(2)喜欢排球的占比为: 所以喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,所以补全图形如下:(3)该学校共有学生2000人,则选择足球运动的同学有:人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.3、(1)100人;(2)图形见解析,72°;(3)500人【分析】(1)根据“在线阅读”的人数和比例即可求解总人数;(2)根据总人数,求出“在线答疑”的人数,然后补全条形统计图;利用“在线答疑”的人数÷总人数×360°即可得到对应圆心角的度数;(3)根据“在线阅读”人数的占比×总人数即可得到结论.【详解】解:(1)25÷25%=100(人),∴本次调查的人数为100人;(2)∵本次调查的人数为100人,∴“在线答疑”的人数为:100-25-40-15=20(人),补全条形统计图如图所示:“在线答疑”所占圆心角度数为:;(3)由题意,对“在线阅读”感兴趣的人数占比为:,∴(人),∴估计该校学生对“在线阅读”感兴趣共有500人.【点睛】本题考查条形统计图与扇形统计图信息综合,通过对条形统计图与扇形统计图信息的分析,准确求出调查的总人数是解题关键.4、40【分析】根据频率稳定性定理,用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,进而得出得到白球的概率,即可得出等式求出即可.【详解】解:设小球共有x个,根据题意可得:
解得:x=40.经检验x=40,为方程的解且符合题意,答:袋中共有40个球【点睛】此题主要考查了分式方程的应用和利用频率估计概率,得出求白球的频率公式是解题关键.5、(1)n=89,m=92.5,补图见解析;(2)九年级学生掌握防火安全知识较好,理由见解析;(3)840人【分析】(1)直接根据八年级抽取的10名学生的竞赛成绩可得其众数n的值,将九年级抽取的I0名学生的竞赛成绩重新排列,利用中位数的概念可得m的值,继而补全频数分布直方图可得答案;(2)在平均成绩相等的前提下可比较中位数、众数或方差,合理即可得;(3)用总人数乘以样本中成绩不低于90分人数占被调查人数的比例即可得.【详解】解:(1)由题意知八年级抽取的10名学生的竞赛成绩的众数n=89,将九年级抽取的10名学生的竞赛成绩重新排列为80,83,85,90,92,93,93,95,99,100,∴其中位数m= =92.5,补全频数分布直方图如下:(2)九年级学生掌握防火安全知识较好,理由如下:∵八、九年级参加竞赛的10名学生的平均成绩相等,但九年级10名学生成绩的方差小,∴九年级参加竞赛的10名学生的成绩更加稳定,∴九年级学生掌握防火安全知识较好.(3)估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是(600+800)×=840(人).【点睛】本题考查频数分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
相关试卷
这是一份2021学年第十七章 方差与频数分布综合与测试达标测试,共24页。试卷主要包含了某校八年级人数相等的甲,篮球队5名场上队员的身高,下列说法正确的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试,共20页。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试随堂练习题