初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题
展开
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题,共20页。试卷主要包含了为考察甲,在一次射击训练中,甲等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、新型冠状病毒肺炎(CrnaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CrnaVriusDisease中字母r出现的频数是( )
A.2B.11.1%C.18D.
2、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )
A.,B.,C.,D.,
3、已知数据,,的平均数,方差,则数据,,的平均数和方差分别为( )
A.5,12B.5,6C.10,12D.10,6
4、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:=13,=15:==3.6,==6.3.则麦苗又高又整齐的是( )
A.甲B.乙C.丙D.丁
5、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )
A.甲比乙稳定B.乙比甲稳定
C.甲与乙一样稳定D.无法确定
6、远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是( )
A.众数是11B.平均数是12C.方差是D.中位数是13
7、如表是某次射击比赛中10名选手的射击成绩(环):
关于这10名选手的射击环数,下列说法不正确的是( )
A.众数是8B.中位数是5C.平均数是8D.方差是1.2
8、小明同学对数据15,28,36,4□,43进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则统计结果与被涂污数字无关的是( )
A.平均数B.标准差C.中位数D.极差
9、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是=1.2,=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )
A.乙比甲稳定B.甲比乙稳定
C.甲和乙一样稳定D.甲、乙稳定性没法对比
10、为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2020年4月份用电量的调查结果:关于这15户居民月用电量(单位:度),下列说法错误的是( )
A.平均数是43.25B.众数是30
C.方差是82.4D.中位数是42
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、数据6,3,9,7,1的极差是_________.
2、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)
3、已知一组数据的平均数是5,极差为3,方差为2,则另一组新数组的平均数是________,极差是________,方差是________.
4、甲、乙两名同学进行跳高测试,每人跳10次,他们的平均成绩都是1.55米,方差分别是,,则在本次测试中__________同学的成绩更稳定.(填“甲”或“乙”)
5、一组数据0,1,3,2,4的平均数是__,这组数据的方差是__.
三、解答题(5小题,每小题10分,共计50分)
1、为了迎接2022年高中招生考试,师大附中外国语学校对全校八年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:
(1)在这次调查中,被抽取的学生的总人数为多少?
(2)请将表示成绩类别为“中”的条形统计图补充完整:
(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是 .
(4)学校八年级共有400人参加了这次数学考试,把成绩类别“优”与“中”的划成“上线生”,估计该校八年级共有多少名学生的数学成绩能“上线”?
2、某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100)
七年级10名学生的成绩是:80,86,99,96,90,99,100,82,89,99.
八年级10名学生的成绩在C组中的数据是:94,90,93.
七、八年级抽取的学生成绩统计表
根据以上信息,解答下列问题:
(1)直接写出上述图表中a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.
(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?
3、甲、乙两班各10名同学参加“国防知识”比赛,其预赛成绩如下表:
(1)填写下表:
(2)利用方差判断哪个班的成绩更加稳定?
4、为庆祝五四青年节,学校计划在“五四”前夕举行班级歌咏比赛,要确定一首喜欢唱的人数最多的歌曲为每班必唱歌曲.为此提供代号为四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制成如下的两幅不完整的统计图.请根据图1,图2所提供的信息,解答下列问题:
(1)本次抽样调查的学生有多少名?
(2)请将条形统计图补充完整;
(3)求扇形图中的圆心角度数;
(4)由统计图发现喜欢唱的人数最多的歌曲为哪一首?若全校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生喜欢唱此歌曲?
5、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.
请根据图表中提供的信息解答下列问题:
(1)填空:m= ,n= ,扇形统计图中E组所占的百分比为 %;
(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.
(3)治污减霾,你有什么建议?
-参考答案-
一、单选题
1、A
【分析】
根据CrnaVriusDisease中共有18个字母,其中r出现2次可得答案.
【详解】
解:CrnaVriusDisease中共有18个字母,其中r出现2次,
∴频数是2,
故选A.
【点睛】
本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.
2、C
【分析】
直接利用样本容量的定义以及结合频数除以总数=频率得出答案.
【详解】
解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,
∴此抽样样本中,样本容量为:100,
不合格的频率是:=0.08.
故选:C.
【点睛】
本题主要考查了频数与频率,正确掌握频率求法是解题关键.
3、C
【分析】
将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可.
【详解】
解:∵数据,,的平均数
即:
∴数据,,的平均数为
又∵数据,,的方差
即:
∴数据,,的方差为
故选:C
【点睛】
本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键.
4、D
【分析】
方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.
【详解】
解:,
乙、丁的麦苗比甲、丙要高,
,
甲、丁麦苗的长势比乙、丙的长势整齐,
综上,麦苗又高又整齐的是丁,
故选:D.
【点睛】
本题主要考查了方差的意义和应用,解题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
5、C
【分析】
先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.
【详解】
解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,
乙5天制作的个数分别为10、15、10、20、15,
∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,
∴甲、乙制作的个数稳定性一样,
故选:C.
【点睛】
本题主要考查了利用方差进行决策,准确分析判断是解题的关键.
6、D
【分析】
根据中位数、平均数、众数和方差的定义计算即可得出答案.
【详解】
解:A.数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,故选项A不符合题意;
B. =(11+10+11+13+11+13+15)÷7=12,即平均数是12,故选项B不符合题意;
C.S2=×[(10-12)2+(11-12)2×3+(13-12)2×2+(15-12)2]=,故选项C不符合题意;
D.将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,故选项D符合题意;
故选:D.
【点睛】
本题主要考查了中位数、平均数、众数和方差,熟练掌握中位数、众数的定义和方差、平均数的计算公式是解题的关键.
7、B
【分析】
根据众数、中位数、平均数及方差的定义逐一计算可得答案.
【详解】
解:这组数据中8出现次数最多,即众数为8;
其中位数是第5、6个数据的平均数,故其中位数为;
平均数为,
方差为,
故选:B.
【点睛】
本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.
8、C
【分析】
利用中位数、平均数、标准差和极差的定义对各选项进行判断.
【详解】
解:五个数据从小到大排列为:15,28,36,4□,43或15,28,36,43,4□,
∴这组数据的平均数、标准差和极差都与被涂污数字有关,
而两种排列方式的中位数都是36,
∴计算结果与被涂污数字无关的是中位数.
故选:C.
【点睛】
本题考查了中位数、平均数、标准差和极差,解决本题的关键是掌握中位数、平均数、标准差和极差的定义.
9、A
【分析】
根据方差的性质解答.
【详解】
解:∵甲乙两人的方差分别是=1.2,=1.1,
∴乙比甲稳定,
故选:A.
【点睛】
此题考查了方差的性质:方差越小越稳定.
10、A
【分析】
根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.
【详解】
解:15户居民2015年4月份用电量为30,30,30,30,30,42,42,42,50,50,50,51,51,51,51,
平均数为×(30+30+30+30+30+42+42+42+50+50+50+51+51+51+51)=42,
中位数为42;
众数为30,
方差为 ×[5×(30﹣42)2+3×(42﹣42)2+3×(50﹣42)2+4×(51﹣42)2]=82.4.
故B、C、D正确.
故选:A.
【点睛】
本题考查的是平均数,中位数,众数,方差,熟练掌握平均数,中位数,众数,方差的定义是解题关键.
二、填空题
1、8
【分析】
根据极差的定义,分析即可,极差:一组数据中最大值与最小值的差叫做这组数据的极差.
【详解】
解:数据6,3,9,7,1的极差是
故答案为:
【点睛】
本题考查了极差定义,理解极差的定义是解题的关键.
2、变大
【分析】
先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.
【详解】
解:∵李强再跳两次,成绩分别为7.6,8.0,
∴这组数据的平均数是,
∴这8次跳远成绩的方差是:
∵0.0225>,
∴方差变大;
故答案为:变大.
【点睛】
本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键.
3、11 6 8
【分析】
根据方差和平均数的变化规律可得:数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1,极差为2×3,方差是方差为2×22,再进行计算即可.
【详解】
解:∵数据x1、x2、x3、x4、x5的平均数是5,极差为3,方差为2,
∴新数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1=11,
极差为2×3=6,
方差为2×22=8,
故答案为:11、6、8.
【点睛】
此题考查了方差的特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,若数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.
4、乙
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:,,
,
甲、乙两名同学成绩更稳定的是乙;
故答案为:乙.
【点睛】
本题考查方差的意义,解题的关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5、2 2
【分析】
依据平均数的定义:,计算即可得;再根据方差的定义: 列式计算可得.
【详解】
解:这组数据的平均数,
方差,
故答案为:2,2.
【点睛】
本题主要考查了平均数,方差的计算,熟悉相关性质是解题的关键.
三、解答题
1、(1)50(人);(2)10(人),图形见详解;(3)72°.(4)160(人).
【分析】
(1)利用成绩为良的人数以及百分比求出总人数即可.
(2)求出成绩为中的人数,画出条形图即可.
(3)根据圆心角=360°×百分比即可.
(4)先求出抽查中上线的百分比,用样本的百分比含量估计总体的数量解决问题即可.
【详解】
解:(1)总人数=22÷44%=50(人).
(2)中的人数=50−10−22−8=10(人),
条形图如图所示:
(3)表示成绩类别为“优”的扇形所对应的圆心角的度数=360°×=72°,
故答案为72°.
(4)抽查中成绩类别“优”与“中”的划成“上线生”有10+10=20(人),
∴抽查中成绩类别“优”与“中”的划成“上线生”百分比为:
学校八年级共有400人参加了这次数学考试,估计该校八年级优秀人数为400×40%=160(人).
【点睛】
本题考查条形统计图和扇形统计图信息获取与处理,样本容量,扇形圆心角,补画条形统计图,用样本的百分比含量估计总体中的数量,解题的关键是掌握从条形统计图和扇形统计图中信息读取的能力.
2、(1)40,93.5,99;(2)八年级掌握得更好,理由见解析;(3)780人
【分析】
(1)由八年级学生成绩的扇形统计图可求得得分在C组的百分比,根据各百分比的和为1即可求得a的值;由扇形统计图可求得八年级得分在各个组的人数,从而可求得中位数b;根据七年级10名学生成绩中出现次数最多的是众数,则可得c;
(2)两个年级得分的平均数相同,但八年级得分的方差较小,根据方差的特征即可判断八年级学生掌握得更好;
(3)求出两个年级得分的优秀率做为全校得分的优秀率,即可求得得分为优秀的学生人数.
【详解】
(1)由八年级学生成绩的扇形统计图,成绩在C组的学生所占的百分比为:,则
∴a=40
八年级得分在A组的有:10×20%=2(人),得分在B组的有:10×10%=1(人),得分在D组的有:10×40%=4(人)
由此可知,得分的中位数为:
七年级10名学生的成绩中99分出现的次数最多,即众数为99,故c=99
(2)八年级学生掌握得更好
理由如下:因为两个年级的平均数相同,而八年级的众数与中位数都比七年级的高,说明八年级高分的学生更多;八年级成绩的方差比七年级的方差小,说明八年级成绩的波动更小,成绩更接近.
(3)两个年级得分的优秀率为:
1200×65%=780(人)
所以参加此次调查活动成绩优秀的学生人数约为780人
【点睛】
本题是统计图与统计表的综合,考查了扇形统计图,方差、中位数、众数,样本估计总体等知识,读懂统计图,从中获取信息是关键.
3、(1)8;8;7.5;(2)甲班的成绩更加稳定
【分析】
(1)分别求出甲、乙两班的平均数、中位数、众数,即可得到答案;
(2)分别求出甲、乙两个班的方差,即可进行判断.
【详解】
解:(1)甲班的众数为:8;
乙班的平均数为:;
乙班的中位数为:;
故答案为:8;8;7.5;
(2)甲班的方差为:
;
乙班的方差为:
;
∵,
∴,
∴甲班的成绩更加稳定;
【点睛】
本题考查了利用方差判断稳定性,也考查了加权平均数、众数、中位数,解题的关键是熟练掌握所学的知识,正确的进行数据的处理.
4、(1)本次抽样调查的学生有180人;(2)见解析;(3)72°;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.
【分析】
(1)用曲目D的人数除以其占比即可得到答案;
(2)根据(1)所求,先算出曲目C的人数,然后补全统计图即可;
(3)用360度乘以曲目A的人数占比即可得到答案;
(4)根据统计图可知喜欢曲目C的人数最多,然后用全校人数乘以样本中曲目C的占比即可得到答案.
【详解】
解:(1)由题意得:总人数人,
答:本次抽样调查的学生有180人;
(2)由(1)得喜欢曲目C的人数人,
∴补全条形统计图如下所示:
(3)由题意得扇形图中A的圆心角度数;
(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有人,
答:由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.
【点睛】
本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,补全统计图,求扇形圆心角度数等等,读懂统计图是解题的关键.
5、(1)400,100,15;(2)60万人;(3)见解析
【分析】
(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;
(2)根据全市总人数乘以D类所占比例,可得答案;
(3)根据以上图表提出合理倡议均可.
【详解】
解:(1)本次调查的总人数为80÷20%=400(人),
则B组人数m=400×10%=40(人),
C组人数n=400﹣(80+40+120+60)=100(人),
∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;
(2)200×=60(万人),
答:估计其中持D组“观点”的市民人数有60万人;
(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.
倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.
【点睛】
本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.
射击成绩(环)
6
7
8
9
10
人数(人)
1
2
4
2
1
居民(户)
5
3
3
4
月用电量(度/户)
30
42
50
51
年级
七年级
八年级
平均数
92
92
中位数
93
b
众数
c
100
方差
52
50.4
6分
7分
8分
9分
10分
甲班
1人
2人
4人
2人
1人
乙班
2人
3人
1人
1人
3人
平均数
中位数
众数
甲班
8
8
乙班
7和10
级别
观点
频数(人数)
A
大气气压低,空气不流动
80
B
地面灰尘大,空气湿度低
m
C
汽车尾气排放
n
D
工厂造成的污染
120
E
其他
60
相关试卷
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试随堂练习题,共22页。试卷主要包含了新型冠状病毒肺炎,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共18页。试卷主要包含了下列一组数据等内容,欢迎下载使用。
这是一份2020-2021学年第十七章 方差与频数分布综合与测试同步训练题,共21页。试卷主要包含了篮球队5名场上队员的身高,下列说法中正确的是.等内容,欢迎下载使用。