初中北京课改版第十七章 方差与频数分布综合与测试课堂检测
展开
这是一份初中北京课改版第十七章 方差与频数分布综合与测试课堂检测,共21页。试卷主要包含了一组数据a-1等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A.平均数、中位数和众数都是3B.极差为4C.方差是D.标准差是2、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差甲6.20.25乙6.00.58丙5.80.12丁6.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )A.甲 B.乙 C.丙 D.丁3、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.星期日一二三四五六个数11121013131312对于小强做引体向上的个数,下列说法错误的是( )A.平均数是12 B.众数是13C.中位数是12.5 D.方差是4、一组数据a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,则另一组数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数和方差分别是( )A.2m-3、2n-3 B.2m-1、4n C.2m-3、2n D.2m-3、4n5、在对一组样本数据进行分析时,小华列出了方差的计算公式S2=,下列说法错误的是( )A.样本容量是5 B.样本的中位数是4C.样本的平均数是3.8 D.样本的众数是46、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( )组.A.10 B.9 C.8 D.77、甲,乙,丙,丁四个小组的同学分别参加了班级组织的中华古诗词知识竞赛,四个小组的平均分相同,其方差如下表.若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选( )组名甲乙丙丁方差4.33.243.6A.甲 B.乙 C.丙 D.丁8、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有( )A.32人 B.40人 C.48人 D.50人9、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A.众数 B.中位数 C.平均数 D.方差10、在2020东京奥运会女子10米气步枪的项目中,杨倩以251.8环的好成绩一举夺冠,为中国体育代表团斩获奥运首金.现将决赛淘汰阶段中国选手杨倩每一轮(两轮之和)的数据进行汇总,并进行一定的数据处理作出以下表格.姓名第1轮第2轮第3轮第4轮第5轮第6轮第7轮总计杨倩20.921.721.020.621.121.320.5147.1根据表格信息可以得到杨倩在决赛淘汰阶段成绩的极差和中位数分别为多少( )A.1.1,20.6 B.1.2,20.6 C.1.2,21.0 D.1.1,21.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当今最常用的购物软件“手机淘宝”的英语翻译为“mobile phone Taobao”,其中字母“o”出现的频率为__________.2、甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩比较稳定的是 _____(填“甲”或“乙”).3、某科研小组为了考查A区域河流中野生鱼的数量,从中捕捞200条,作上标记后,放回河中,经过一段充足的时间后,再从中抽捞出300条,发现有标记的鱼有15条,则估计A区域河流中野生鱼有____条.4、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名运动员参加决赛,最合适的运动员是______. 甲乙平均数368320方差2.55.6 5、新冠疫情期间,小李同学连续两周居家健康检测,如下图是小李记录的体温情况折线统计图,记第一周体温的方差为,第二周体温的方差为,试判断两者之间的大小关系______(用“>”、“=”、“<”填空).小李连续两周居家体温测量折线统计图三、解答题(5小题,每小题10分,共计50分)1、 “中国梦”是中华民族每一个人的梦,各中小学开展经典诵读活动,是“中国梦”教育这一宏大乐章里的响亮音符某学校在经典诵读活动中,对全校学生用A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行评价,现从中抽取若干名学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少名学生进行调查;(2)将图甲中的条形统计图补充完整;(3)求出图乙中D等级所对应的扇形圆心角的度数;(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生获得B等级的评价.2、 “网上购物”已成为现代人们的生活方式.某电商平台在A地区随机抽取了100位居民进行调查,获得了他们每个人近七天“网上购物”消费总金额(单位:元),整理得到右边频率统计表:消费总金额x频率0.110.240.30.20.10.040.01(1)求被调查居民“网上购物”消费总金额不低于500元的频率;(2)假设同一组中的数据用该组数据所在范围的组中值(如一组,取)为准,求该地区消费总金额的平均值;(3)若A地区有100万居民,该平台为了促销,拟对消费总金额不到200元的居民提供每人10元的优惠,试估计该平台在A地区拟提供的优惠总金额.3、疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D:95≤x≤100)七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82八年级10名学生的成绩在C组中的数据是:94,90,92七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级bcd52八年级929310050.4根据以上信息,解答下列问题:(1)这次比赛中 年级成绩更平衡,更稳定;(2)直接写出上述a、b、c的值:a= ,b= ,c= ;d= (3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的人数4、某校在八年级(1)班学生中开展对于“我国国家公祭日(12月13日)”知晓情况的问卷调查.问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.请根据图中信息解答下列问题:(1)求该班参与问卷调查的人数. (2)把条形统计图补充完整. (3)求C类人数占参与问卷调查人数的百分比. (4)求扇形统计图中A类所对应扇形圆心角的度数.5、民以食为天,农产品是关系国计民生的重要商品,是事关经济发展、社会稳定和国家自立的头等大事,某数学兴趣小组为了解我国近几年人均主要农产品产量情况,该组成员通过对我国粮食、猪羊牛肉的人均产量进行收集、整理、描述和分析,下面给出部分信息.信息一、2005﹣2019年我国人均粮食产量统计图:信息二、将2005﹣2019年划分为三个时间段,每个时间段内我国人均粮食产量如下:时间段2005﹣20092010﹣20142015﹣2019平均数/千克388.4448.4477信息三、2019年我国各省、市、自治区粮食、猪羊牛肉的人均产量的统计量如下:统计量类别平均数中位数极差人均粮食产量/千克4754191981人均猪羊牛肉产量/千克4042.591.5(以上数据来源于《2020中国统计年鉴》)根据以上信息,解决下列问题:(1)2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,甘肃省这两项主要农产品产量排名更靠前的是_________(填“人均粮食产量”或“人均猪羊牛肉产量”),理由是:_________.(2)根据以上数据信息分析,判断下列结论正确的是_________;(只填序号)①2005﹣2015年内我国人均粮食产量呈现持续增长趋势;②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高;③2005﹣2019年我国人均粮食产量连续12年高于人均400千克的国际粮食安全标准线.(3)记我国2005﹣2009年人均粮食产量的方差为,2015﹣2019年人均粮食产量的方差为,则_________.(填<、=或>) -参考答案-一、单选题1、D【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,C选项不符合题意;S=,因此D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.2、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵,∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,,甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.3、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:,故选项A不符合题意;∵13出现的次数最多,∴众数是13,故B选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.4、B【分析】根据平均数和方差的变化规律即可得出答案.【详解】∵a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,∴数据a、b、c、d、e、f、g的平均数是m+1,方差是n,
∴2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;
∵数据a、b、c、d、e、f、g的方差是n,
∴数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22•n=4n;
故选:B.【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.5、D【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为,则样本的容量是5,选项A正确;样本的中位数是4,选项B正确;样本的平均数是,选项C正确;样本的众数是3和4,选项D错误;故选:D.【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.6、A【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【详解】解:145-50=95,
95÷10=9.5,
所以应该分成10组.
故选A.【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.7、B【分析】根据方差的意义求解即可.【详解】解:由表格知,乙的方差最小,所以若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选乙,故选:B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.8、D【分析】根据频率=频数总数,求解即可.【详解】解:根据频率=频数总数,即总数=频数频率,则参加比赛的同学共有40÷0.8=50(人),故选:D.【点睛】本题考查了频数与频率,记住公式:频率=频数总数是解题的关键.9、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.10、C【分析】根据极差和中位数的求解方法,求解即可,极差是一组数据中最大数减去最小数,中位数为是指一组数据从小到大排列,位于中间的那个数,数据个数为奇数时,中位数为中间的数,数据个数为偶数时,中位数为中间两数的平均值.【详解】解:成绩从小到大依次为:、、、、、、极差为中位数为故选:C【点睛】此题考查了极差和中位数的计算,解题的关键是掌握极差和中位数的有关概念.二、填空题1、【分析】用字母“o”出现的个数除以总的字母个数即可得出答案.【详解】解:∵字母“o”出现的次数为4,∴该英语中字母“o”出现的频率为;故答案为:.【点睛】此题主要考查了频率,关键是掌握频率的定义,频率=频数÷数据总数.2、乙【分析】根据方差的意义求解即可.【详解】解:∵S甲2=1.4,S乙2=0.2,∴S乙2<S甲2,∴两人成绩比较稳定的是乙,故答案为:乙.【点睛】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3、4000【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有200条,即可得出答案.【详解】解:∵300条鱼中发现有标记的鱼有15条,
∴有标记的占到,
∵有200条鱼有标记,
∴该河流中有野生鱼200÷=4000(条);
故答案为:4000.【点睛】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.4、甲【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵甲的平均数比乙的平均数大,
甲的方差小于乙的方差,
∴最合适的运动员是甲.
故答案为:甲.【点睛】此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、<【分析】方差反应是数据的波动程度,方差越大,波动性越大,结合折线图可得小丽第一周居家体温在之间,第二周居家体温在之间,从最大值与最小值的差可以得到答案.【详解】解:根据折线统计图很容易看出小丽第一周居家体温在之间,第二周居家体温在之间,小丽第一周居家体温数值波动小于其第二周居家体温数值波动,.故答案为:.【点睛】本题考查的是折线统计图,数据的波动性即方差,理解方差的含义是解题的关键.三、解答题1、(1)100名;(2)图见解析;(3);(4)700.【分析】(1)根据等级的条形统计图和扇形统计图的信息即可得;(2)根据(1)的结果,求出等级的学生人数,再补全条形统计图即可;(3)利用乘以等级所占的百分比即可得;(4)利用2000乘以等级所占的百分比即可得.【详解】解:(1)抽取调查的学生总人数为(名),答:共抽取了100名学生进行调查;(2)等级的人数为(名),则补全条形统计图如下:(3)图乙中等级所对应的扇形圆心角的度数为,答:图乙中等级所对应的扇形圆心角的度数;(4)(名),答:估计有700名学生获得等级的评价.【点睛】本题考查了条形统计图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键.2、(1)0.05;(2)260元;(3)350万元【分析】(1)根据表格数据,将不低于500的频率相加即可;(2)根据组中值乘以对应的频率即可求得该地区消费总金额的平均值;(3)根据表中消费总金额不到200元的频率乘以100万即可求得该平台在A地区拟提供的优惠总金额.【详解】解:(1)被调查居民“网上购物”消费总金额不低于500元的频率为0.04+0.01=0.05(2)该地区消费总金额的平均值为(元)(3)(万元)【点睛】本题考查了根据频率求频数,根据组中值求平均数,根据样本求总体,掌握频数与频率的关系是解题的关键.3、(1)八;(2)40;91.4;93;96;(3)840人【分析】(1)根据方差的意义求解即可;
(2)先求出八年级学生成绩落在C组人数所占百分比,再根据百分比之和为1求解可得a的值,然后根据平均数、中位数和众数的概念求解即可;
(3)用总人数乘以样本中成绩优秀(x≥90)的八年级学生人数对应的百分比即可.【详解】(1)∵七年级成绩的方差为52,八年级成绩的方差为50.4,
∴八年级成绩的方差小于七年级成绩的方差,
∴八年级成绩更平衡,更稳定;
故答案为:八;
(2)∵八年级学生成绩落在C组人数所占百分比为3÷10×100%=30%,
∴a%=1-(20%+10%+30%)=40%,即a=40;七年级的平均数=
将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,
则这组数据的中位数七年级的成绩中96出现次数最多,所以众数d=96,
故答案为:40;91.4;93;96;
(3)估计参加此次调查活动成绩优秀(x≥90)的八年级学生人数是1200×(1-20%-10%)=840(人).【点睛】考查方差、中位数、众数的意义和计算方法,扇形统计图,从统计图中获取数量之间的关系是解决问题的关键.4、(1)50人;(2)见解析;(3)20%;(4)108°【分析】(1)利用样本估计总体,将D类型的人数与其所占的百分比相除即可;(2)用该班参与问卷调查的人数减去A、B、D类的人数即可;(3)用C类人数除以总调查人数再乘以100%即可;(4)求出A类人数占总调查人数的百分比,再乘以即可.【详解】(1)20÷40%=50(人),所以该班参与问卷调查的人数为50人;(2)C类人数为(人),补全条形统计图如下: (3),所以C类人数占参与问卷调查人数的20%;(4),所以A类所对应扇形圆心角的度数为108°.【点睛】本题考查了数据的收集与统计图,结合条形与扇形统计图准确的获取数据信息是解题的关键.5、(1)“人均粮食产量”,2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后(2)①②③(3)>【分析】(1)根据题目中的数据和信息三,可以解答本题;(2)根据信息一中统计图中的数据,可以判断各个小题中的结论是否成立;(3)根据信息一中统计图中的数据波动大小,可以解答本题.【详解】解:(1) 我国人均粮食产量的中位数为419千克,我国人均猪羊牛肉产量的中位数是42.5千克,∵2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,∵440>419,36.2<42.5,2019年甘肃省人均粮食产量为440千克排在中位数之前,而人均猪羊牛肉产量为36.2千克,排在中位数之后,故答案为: “人均粮食产量”; 2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后;(2)①从统计图中观察2005﹣2015年内我国人均粮食产量呈现持续增长趋势正确;故①正确,②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高;∵(2010﹣2014)平均数/千克-(2005﹣2009)平均数/千克=448.4-388.4=60,(2015﹣20194)平均数/千克-(2010﹣2014)平均数/千克=77-448.4=28.6,∵60>28.6,∴2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高正确;③2005﹣2019年我国人均粮食产量连续15年平均年产量中从高于人均400千克的国际粮食安全标准线从2008年——2019年共12年2005﹣2019年我国人均粮食产量连续12年平均年产量高于人均400千克的国际粮食安全标准线但时间正确故③正确,故答案为:①②③;(3)∵我国2005﹣2009年人均粮食产量波动较大,2015﹣2019年人均粮食产量波动较小,我国2005﹣2009年人均粮食产量的方差为大于2015﹣2019年人均粮食产量的方差为,∴>. 故答案为:>.【点睛】本题考查频数分布直方图、加权平均数、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.
相关试卷
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评,共21页。试卷主要包含了新型冠状病毒肺炎,一组数据1等内容,欢迎下载使用。
这是一份数学八年级下册第十七章 方差与频数分布综合与测试精练,共23页。试卷主要包含了某校八年级人数相等的甲等内容,欢迎下载使用。
这是一份2020-2021学年第十七章 方差与频数分布综合与测试同步训练题,共21页。试卷主要包含了篮球队5名场上队员的身高,下列说法中正确的是.等内容,欢迎下载使用。