初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试复习练习题
展开京改版八年级数学下册第十七章方差与频数分布必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两位同学连续五次的数学成绩如下图所示:
下列说法正确的是( )
A.甲的平均数是70 B.乙的平均数是80
C.S2甲>S2乙 D.S2甲=S2乙
2、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196.现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高( )
A.平均数变小,方差变小 B.平均数变小,方差变大
C.平均数变大,方差变小 D.平均数变大,方差变大
3、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )
周阅读用时数(小时) | 4 | 5 | 8 | 12 |
学生人数(人) | 3 | 4 | 2 | 1 |
A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是6
4、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数和方差s2.
| 甲 | 乙 | 丙 | 丁 |
平均数(单位:秒) | 52 | m | 52 | 50 |
方差s2(单位:秒2) | 4.5 | n | 12.5 | 17.5 |
根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是( )
A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=18
5、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()
A.14 B.12 C.9 D.8
6、在频数分布直方图中,下列说法正确的是( )
A.各小长方形的高等于相应各组的频率
B.各小长方形的面积等于相应各组的频数
C.某个小长方形面积最小,说明落在这个组内的数据最多
D.长方形个数等于各组频数的和
7、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )
A.众数 B.中位数 C.平均数 D.方差
8、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )
A.平均数 B.中位数 C.方差 D.众数
9、小明同学对数据15,28,36,4□,43进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则统计结果与被涂污数字无关的是( )
A.平均数 B.标准差 C.中位数 D.极差
10、在“5•18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是( )
A.调查的方式是普查
B.该街道约有18%的成年人吸烟
C.该街道只有820个成年人不吸烟
D.样本是180个吸烟的成年人
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是,,那么两人中射击成绩比较稳定的是_________.
2、在数3141592653中,偶数出现的频率是______.
3、七年级(5)班20名女生的身高如下(单位:cm):
153 156 152 158 156 160 163 145 152 153
162 153 165 150 157 153 158 157 158 158
(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):
身高(cm) | 140~150 | 150~160 | 160~170 |
频数 |
|
|
|
百分比 |
|
|
|
(2)上表把身高分成___组,组距是___;
(3)身高在___范围的人数最多.
4、某校九年级进行了3次体育中考项目﹣﹣1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是s甲2=0.01,s乙2=0.009,s丙2=0.0093.则甲、乙、丙三位同学中成绩最稳定的是 ___.
5、已知一组数据的方差S[(6﹣7)+(10﹣7)+(a﹣7)+(b﹣7)+(8﹣7)](a,b为常数),则a+b的值为_______.
三、解答题(5小题,每小题10分,共计50分)
1、在新冠状病毒防控期间,各地纷纷展开了停课不停学活动,学校为了了解学生自主阅读情况,抽样调查了部分学生每周用于自主阅读的时间,过程如下:
收集数据:
从全校随机抽取20名学生,每周用于自主阅读时间的调查,数据如下:(单位:)
30 60 81 50 44 110 130 146 80 100
60 80 120 140 75 81 10 30 81 92
整理数据:按下表分段整理样本数据:
自主阅读时间 | ||||
等级 | A | |||
人数 | 3 | 8 | 4 |
分析数据:样本的平均数、中位数、众数如下表所示:
平均数 | 中位数 | 众数 |
80 |
请回答下列问题:
(1)表格中的数据_______,________,_______;
(2)用样本中的统计量估计该校学生每周用于课外阅读时间的等级为______;
(3)假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读________本课外书.
2、今年是中国共产党建党100周年,为了更好地对中学生开展党史学习教育活动,甲、乙两校进行了相关知识测试.在两校各随机抽取20名学生的测试成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲校20名学生成绩的频数分布表和频数分布直方图
表1甲校学生样本成绩频数分布表:
成绩(分) | 频数(人) | 频率 |
0.05 | ||
c | ||
3 | 0.15 | |
8 | 0.40 | |
6 | 0.30 | |
合计 | 20 | 1.00 |
b.甲校成绩在的这一组的具体成绩是:83,86,87,84,88,89,89,89
c.甲、乙两校成绩的统计数据如表2所示:
学校 | 平均分 | 中位数 | 众数 |
甲 | 83.7 | 89 | |
乙 | 84.2 | 85 | 85 |
根据以如图表提供的信息,解答下列问题:
(1)表1中____;表2中___;并补全图1甲校学生样本成绩频数分布直方图;
(2)在此次测试中,某学生的成绩是86分,在他所属学校排在前10名,由表中数据可知该学生是___校的学生(填“甲”或“乙”),理由____;
(3)若甲校共有1200人,成绩不低于85分为“优秀”,则甲校成绩“优秀”的人数约为多少人?
3、为了遏制新型冠状病毒疫情的蔓延势头,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.
(1)本次调查的人数有多少人?
(2)请补全条形图,并求出“在线答疑”在扇形图中的圆心角度数;
(3)若全校学生共有2000人,请你估计该校学生对“在线阅读”感兴趣共有多少人?
4、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:
(1)该校抽查八年级学生的人数为 ,图中的值为 ;
(2)请将条形统计图补充完整;
(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;
(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?
5、对饮食健康越来越关注,特别关注食物的热量高低某校现在对学生食品的热量进行调查,随机从八、九年级中各随机抽取20名学生,对其食品热量进行整理、描述和分析(热量值用表示,共分为四个等级:A.,B.,C.,D.),下面给出了部分信息.
八年级20名学生食品的热量中B等级包含的所有数据为:
73,76,76,77,77,77,79.
九年级20名学生食品的热量是:64,64,66,68,69,70,72,74,77,78,80,82,85,85,85,85,86,93,96,101.
八、九年级抽取的学生食品热量统计表
年级 | 八年级 | 九年级 |
平均数 | 79 | 79 |
中位数 | a | 79 |
众数 | 81 | b |
根据以上信息,解答下列问题:
(1)填空:上述图表中____________, ____________.
(2)根据图表中的数据,判断八、九年级中哪个年级学生食品的热量更高?请说明理由(写出一条理由即可);
(3)若该校八、九年级分别有1500,1600名学生,估计学生吃的食品的热量为A等级的学生共有多少人?
-参考答案-
一、单选题
1、D
【分析】
根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案
【详解】
由条形统计图可知,甲的平均数是,故A选项不正确;
乙的平均数是,故B选项不正确;
甲的方差为,
乙的方差为,
故C选项不正确,D选项正确;
故选D.
【点睛】
本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.
2、A
【分析】
分别计算出原数据和新数据的平均数和方差即可得.
【详解】
解:原数据的平均数为=192.8,
则原数据的方差为[(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2]=4.512,
新数据的平均数为=192,
则新数据的方差为[(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2]=4,
所以平均数变小,方差变小,
故选:A.
【点睛】
本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式.
3、D
【分析】
根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.
【详解】
解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
故选:D.
【点睛】
本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.
4、A
【分析】
根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.
【详解】
解:因为乙选手是这四名选手中成绩最好的,
所以乙选手的成绩的平均数最小,
又因为乙选手发挥最稳定,
所以乙选手成绩的方差最小.
故选:A.
【点睛】
本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.
5、B
【分析】
根据样本频数直方图、样本容量的性质计算,即可得到答案.
【详解】
根据题意,第二组的频数是:
故选:B.
【点睛】
本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解.
6、B
【分析】
根据频数直方图的定义逐一判断即可得答案.
【详解】
在频数分布直方图中,各小长方形的高等于频数与组距的比值,故A选项错误,
在频数分布直方图中,各小长方形的面积等于相应各组的频数,故B选项正确,
在频数分布直方图中,某个小长方形面积最小,说明落在这个组内的数据最少,故C选项错误,
在频数分布直方图中,各组频数的和等于各小长方形的高的和,故D选项错误,
故选:B.
【点睛】
本题考查频数直方图,准确理解频数直方图中几个等量关系是解题关键.
7、D
【分析】
根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解
【详解】
解:由题意得:
原中位数为3,原众数为3,原平均数为3,原方差为1.8;
去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;
∴统计量发生变化的是方差;
故选D
【点睛】
本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.
8、B
【分析】
根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案
【详解】
根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,
故选B
【点睛】
本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.
9、C
【分析】
利用中位数、平均数、标准差和极差的定义对各选项进行判断.
【详解】
解:五个数据从小到大排列为:15,28,36,4□,43或15,28,36,43,4□,
∴这组数据的平均数、标准差和极差都与被涂污数字有关,
而两种排列方式的中位数都是36,
∴计算结果与被涂污数字无关的是中位数.
故选:C.
【点睛】
本题考查了中位数、平均数、标准差和极差,解决本题的关键是掌握中位数、平均数、标准差和极差的定义.
10、B
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;
这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,故C选项错误;
样本是1000个成年人是否吸烟,故D选项错误;
本地区约有18%的成年人吸烟是对的,故B选项正确.
故选:B.
【点睛】
本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键.
二、填空题
1、小刘
【分析】
根据方差的意义即可求出答案.
【详解】
解:由于S小刘2<S小李2,且两人10次射击成绩的平均值相等,
∴两人中射击成绩比较稳定的是小刘,
故答案为:小刘
【点睛】
本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,熟练运用方差的意义是解题的关键.
2、30%
【分析】
在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.
【详解】
由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:
故答案为:30%
【点睛】
本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.
3、3
10 150~160
【分析】
(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;
(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;
(3)根据所填信息确定身高在哪个范围的人数最多即可.
【详解】
(1)填表:
身高(cm) | 140~150 | 150~160 | 160~170 |
频数 | 1 | 15 | 4 |
百分比 | 5% | 75% | 20% |
(2)上表把身高分成3组,组距是10;
(3)身高在范围最多.
【点睛】
本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.
4、乙
【分析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:∵s甲2=0.01,s乙2=0.009,s丙2=0.0093,
∴s乙2<s丙2<s甲2,
∴甲、乙、丙三位同学中成绩最稳定的是乙.
故答案为:乙.
【点睛】
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5、11
【分析】
根据方差及平均数的定义解答.
【详解】
解:由题意得,
∴,
故答案为:11.
【点睛】
此题考查方差的定义,平均数的计算公式,熟记方差的定义是解题的关键.
三、解答题
1、(1)5,80.5,81;(2)B;(3)13
【分析】
(1)用总人数减去A,,等级的人数即可求出a的值;根据中位数概念即可求出b的值;根据众数的概念即可求出c的值;
(2)根据平均数,中位数和众数即可得出该校学生每周用于课外阅读时间的等级;
(3)用阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.
【详解】
(1);
20名学生每周用于自主阅读的时间从小到大排列为如下:
10,30,30,44,50,60,60,75,80,80,81,81,81,92,100,110,120,130,140,146,
∵第10、11个数据分别为80、81,
∴中位数;
出现次数最多的数是81,
∴众数是81.
故答案为:5,80.5,81;
(2)∵平均数为80,中位数为80.5,众数为81,
∴用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B;
故答案为:B;
(3)估计该校学生每人一年(按52周计算)平均阅读课外书为(本),
故答案为:13.
【点睛】
此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.
2、(1)1,87.5;补全图见解析;(2)乙,理由见解析;(3)甲校成绩“优秀”的人数约为720人.
【分析】
(1)根据表1中的数据,可以求得a、b的值,进而由中位数的定义可得m的值,可补全图1甲校学生样本成绩频数分布直方图;
(2)根据表2中的数据,可以得到该名学生是哪个学校的,并说明理由;
(3)根据表1中的数据,可以计算出甲校成绩“优秀”的人数约为多少人.
【详解】
解:(1)由题意可得:
a=20×0.05=1,
b=20-1-3-8-6=2,
由题意知甲校成绩的中位数恰好在的这一组重新排列后的第4、5两个数,
∴m=(87+88)÷2=87.5,
故答案为:1,87.5;
补全甲校学生样本成绩频数分布直方图,如图所示:
(2)由表2可知:
在此次测试中,某学生的成绩是86分,在他所属学校排在前10名,由表中数据可知该学生是乙校学生,
理由:乙校的中位数85<86<甲校的中位数87.5,
故答案为:乙;
(3)甲校学生样本成绩在的这一组数据中成绩不低于85分有6人,
在的这一组数据中有6人,
1200×=720(人),
∴甲校成绩“优秀”的人数约为720人.
【点睛】
本题考查了频数分布直方图,频数分布表,用样本估计总体,中位数等知识,明确题意,数形结合是解决问题的关键.
3、(1)100人;(2)图形见解析,72°;(3)500人
【分析】
(1)根据“在线阅读”的人数和比例即可求解总人数;
(2)根据总人数,求出“在线答疑”的人数,然后补全条形统计图;利用“在线答疑”的人数÷总人数×360°即可得到对应圆心角的度数;
(3)根据“在线阅读”人数的占比×总人数即可得到结论.
【详解】
解:(1)25÷25%=100(人),
∴本次调查的人数为100人;
(2)∵本次调查的人数为100人,
∴“在线答疑”的人数为:100-25-40-15=20(人),
补全条形统计图如图所示:
“在线答疑”所占圆心角度数为:;
(3)由题意,对“在线阅读”感兴趣的人数占比为:,
∴(人),
∴估计该校学生对“在线阅读”感兴趣共有500人.
【点睛】
本题考查条形统计图与扇形统计图信息综合,通过对条形统计图与扇形统计图信息的分析,准确求出调查的总人数是解题关键.
4、(1)100,18;(2)见解析;(3)(4)72人
【分析】
(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;
(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;
(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数
(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为,400乘以18%即可求得.
【详解】
(1)总人数为:(人);
故答案为:
(2)每天平均课外阅读时间为1.5小时的人数为:(人)
补充条形统计图如下:
(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5
中位数为1.5,平均数为;
(4)(人)
估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有人
【点睛】
本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键.
5、(1)78,85;(2)九年级学生食品热量更高,理由见解析;(3)780人
【分析】
(1)根据八年级的数据求得A等级人数,判断出中位数位于B等级,可求得a的值,根据众数的意义以及九年级的数据求得b;
(2)比较平均数、中位数可得结论;
(3)分别计算该校八、九年级学生的食品热量为A等级的百分比可得答案.
【详解】
解:(1)八年级学生食品的热量处于A等级人数20(人),
∴八年级学生食品的热量的中位数位于B等级的第6、7两个数据,即77、79,
∴a=;
九年级20名学生食品的热量出现最多是85,共有4次,
∴a=85;
故答案为:78,85;
(2)九年级学生食品热量更高.
理由如下:由样本数据可得,八、九年级学生食品热量的平均数均为79,而八年级学生食品热量的中位数78,九年级学生食品热量的中位数79,79>78,所以九年级学生食品热量更高;
(3)由样本数据可得,
八年级学生的食品热量为A等级的有4人,占比﹔
九年级学生的食品热量为A等级的有6人,占比.
则两个年级共有( 人).
【点睛】
本题考查了中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课堂检测: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课堂检测,共21页。试卷主要包含了某校八年级人数相等的甲,一组数据,下列说法正确的是,在频数分布表中,所有频数之和等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课时作业: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课时作业,共21页。试卷主要包含了在这学期的六次体育测试中,甲等内容,欢迎下载使用。
初中北京课改版第十七章 方差与频数分布综合与测试精练: 这是一份初中北京课改版第十七章 方差与频数分布综合与测试精练,共20页。试卷主要包含了某排球队6名场上队员的身高等内容,欢迎下载使用。