


数学七年级下册第五章 二元一次方程组综合与测试课时作业
展开京改版七年级数学下册第五章二元一次方程组专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )
A. B.
C. D.
2、方程组的解是( )
A. B. C. D.
3、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )
A.330千米 B.170千米 C.160千米 D.150千米
4、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )
A.4 B.3 C.2 D.1
5、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )
A.1.2元 B.1.05元 C.0.95元 D.0.9元
6、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )
A. B.
C. D.
7、设m为整数,若方程组的解x、y满足,则m的最大值是( )
A.4 B.5 C.6 D.7
8、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为( )
A.6 B.8 C.10 D.12
9、一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x海里/时,水流速度为y海里/时,则下列方程组中正确的是( ).
A. B.
C. D.
10、下列方程中,是关于x的一元二次方程的是( )
A.x(x-2)=0 B.x2-1-y=0 C.x2+1=x2-2x D.ax2+c=0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若与可以合并成一项,则m+n的值_____.
2、某玩具店在10月份开始售卖中国航天系列的模型积木,其中包括款(中国载人空间站)、款(长征五号运载火箭)、款(火星探测器)、款(天舟货运飞船)、款(航天员公仔),所有模型积木的售价均为整数.在10月份售卖过程中,款和款的售价相同且售价在100元与200元之间,款的售价比款售价低50元,款售价比款售价高40元,款、款、款、款、款的销量之比为,且10月份款与款的销售总额比款的销售额多1000元,款的销售额比款的销售额少20元.进入11月,随着双11购买节的临近,玩具店决定在双11这一天举行促销活动,相比10月份各款的售价,款和款的售价都降低30元,款的售价降低20元,款、款降低的价格都为款降低价格的.活动结束后统计发现:活动当天,款销量比10月份的款销量增加了50%,款销量为10月份自身销量的2倍,款销量增加了10月份款销量的一半,款销量与10月份款销量相同,而款销量相比10月份自身销量有所增加,且活动当天各款模型积木销售总额比10月份款、款、款销售总额的2倍多348元,则双11促销活动当天购买一套中国航天系列的模型积木(款、款、款、款、款各一个)需要__________元.
3、已知方程是二元一次方程,则m=__,n=__.
4、若,则________.
5、已知,则________.
三、解答题(5小题,每小题10分,共计50分)
1、分别用代入消元法和加减消元法解方程组并说明两种方法的共同点.
2、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪.已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元.
(1)求紫外线消毒灯和体温检测仪的单价各为多少元;
(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案?
3、解下列方程组
(1); (2);
4、解方程组:.
5、某商店欲购进A、B两种商品,已知购进A种商品3件和B种商品4件共需220元;若购进A种商品5件和B种商品2件共需250元.
(1)求A、B两种商品每件的进价分别是多少元?
(2)若每件A种商品售价48元,每件B种商品售价31元,且商店将购进A、B两种商品共50件全部售出后,要获得的利润不少于360元,问A种商品至少购进多少件?
---------参考答案-----------
一、单选题
1、B
【分析】
设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.
【详解】
解:设学生人数为x,长凳数为y,
由题意得:,
故选B.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.
2、C
【分析】
先用加减消元法解二元一次方程组,再确定选项即可.
【详解】
解:方程组
由①×3+②得10x=5,
解得,
把代入①中得,
所以原方程组的解是.
故选择C.
【点睛】
本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.
3、C
【分析】
设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.
【详解】
解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,
依题意得: ,
解得: ,
,
故选:C.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
4、C
【分析】
先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.
【详解】
解:由题意得:,
联立,
由①②得:,
解得,
将代入①得:,
解得,
将代入方程得:,
解得,
故选:C.
【点睛】
本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.
5、B
【分析】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.
【详解】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,
根据题意得:,
②–①可得:.
故选:B.
【点睛】
本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.
6、B
【分析】
设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可
【详解】
解:设馒头每个元,包子每个元,根据题意得
故选B
【点睛】
本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.
7、B
【分析】
先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可
【详解】
解:
把①×3得:③,
用③+①得:,解得,
把代入①得,解得,
∵,
∴,即,
解得,
∵m为整数,
∴m的最大值为5,
故选B.
【点睛】
本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.
8、D
【分析】
设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.
【详解】
解:设甲组人数为人,乙组人数为人,
由题意得:,
将①代入②得:,
解得,
即原来乙组的人数为12人,
故选:D.
【点睛】
本题考查了二元一次方程组的应用,正确建立方程组是解题关键.
9、D
【分析】
根据等量关系“顺水时间×顺水速度=90、逆水时间×逆水速度=90”以及顺水、逆水速度与静水速度、水流速度的关系即可解答.
【详解】
解:根据题意可得,顺水速度=x+y,逆水速度=x-y,
,化简得.
故选:D.
【点睛】
考查主要考查了用二元一次方程组解决行程问题,掌握顺水路程及逆水路程的等量关系以及顺水速度=静水速度+水流速度、逆水速度=静水速度一水流速度是解答本题的关键.
10、A
【分析】
根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.
【详解】
解:A、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;
B、含有两个未知数,不是一元二次方程,不符合题意;
C、,含有一个未知数,不是一元二次方程,不符合题意;
D、当时,不是一元二次方程,不符合题意;
故选:A
【点睛】
此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.
二、填空题
1、2
【解析】
【分析】
先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)可得一个关于二元一次方程组,解方程组求出的值,再代入计算即可得.
【详解】
解:由题意得:与是同类项,
则,
解得,
所以,
故答案为:2.
【点睛】
本题考查了同类项、二元一次方程组的应用,熟记同类项的定义是解题关键.
2、
【解析】
【分析】
根据十月份的数据,求得十月份的销售量以及款、款的销售价,再根据十一月份的数据,以及销售价和销售量的范围,求得十月份款、款、款的售价,即可求解.
【详解】
解:设十月份款、款售价为元,则,且为整数,则款的售价为元,款、款的销售价分别为,元,
根据十月份销售量款、款、款、款、款的销量之比为
设销售量分别为,,,,件
则由题意可得:,解得
由题意可得:十一月份款、款、款、款、款的售价分别为:,,,,元
销售量款、款、款、款、款的销量分别为:、、,,件,
由题意可得:
化简得
∵,即
解得
∴
∵,都为正整数,
∴能被整除,则的个位数字为或
则的个位数字为或,则的个位数字为为或
∴,经检验当时,不为整数,舍去,
所以,此时
双11促销活动当天购买一套中国航天系列的模型积木(款、款、款、款、款各一个)为元
故答案为
【点睛】
此题考查了三元一次方程组,二元一次方程的应用,解题的关键是理解题意,找到等量关系,列出方程并根据参数的取值范围确定参数的解.
3、 -2 ##0.25
【解析】
【分析】
根据二元一次方程的定义得到:,.据此可以求得、的值.
【详解】
解:方程是二元一次方程,
,,
解得,.
故答案是:;.
【点睛】
本题考查了二元一次方程的定义.解题的关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
4、-7
【解析】
【分析】
利用非负数的性质列出方程组,求出方程组的解得到x与y的值即可.
【详解】
解:∵,
∴,
解得:,
∴-2-5=-7,
故答案为:-7.
【点睛】
本题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解题的关键.
5、15:7:6;
【解析】
【分析】
由三元一次方程组,将用关于的代数式表示出来,再求比值即可.
【详解】
解:原方程组化为
②-①得,.故.
∴.
故答案为:
【点睛】
本题考查三元一次方程组的解法,牢记解法步骤并能够灵活应用是解题的重点.
三、解答题
1、,两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.
【分析】
根据题意分别直接利用代入消元法与加减消元法求出方程组的解即可.
【详解】
解:代入消元法:,
由①得:y=7-x③,
把③代入②得:5x+21-3x=31,
解得:x=5,
把x=5代入③得:y=2,
则方程组的解为;
加减消元法:,
①×5-②得:2y=4,
解得:y=2,
把y=2代入①得:x=5,
则方程组的解为,
两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.
【点睛】
本题考查解二元一次方程组,主要利用了消元的思想,注意掌握消元的方法有代入消元法与加减消元法.
2、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案.
【分析】
(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于、的二元一次方程组,解方程组即可得出结论;
(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可得出关于的一元一次不等式组,解不等式组即可得出结论.
【详解】
解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,
则由题意得,
解得.
答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;
(2)设购买紫外线消毒灯台,则购买体温检测仪个.
,
解得:,
∵为正整数,
∴该校有5种购买方案.
【点睛】
本题考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于、的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键.
3、(1);(2)
【分析】
(1)利用代入消元法解方程即可;
(2)利用代入消元法解方程即可.
【详解】
(1),
将①代入②,得3x-2(x-3)=5,
解得x=-1,
将x=-1代入①,得y=-1-3=-4,
∴方程组的解是;
(2),
由②得:y=2x-7③,
将③代入①得,3x+2(2x-7)=21,
解得x=5,
将x=5代入③得,y=3,
∴这个方程组的解是.
【点睛】
此题考查解二元一次方程组,掌握解二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.
4、
【分析】
根据加减消元法解方程组即可;
【详解】
解:,
得:,,
把代入①中:,
解得:,
∴方程组的解是.
【点睛】
本题主要考查了二元一次方程组的求解,准确计算是解题的关键.
5、(1)A种商品每件的进价为40元,B种商品每件的进价为25元;(2)A种商品至少购进30件.
【分析】
(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题中的等量关系列出二元一次方程组求解即可;
(2)设购进A种商品m件,则购进B种商品(50-m)件,根据题意列出一元一次不等式求解即可.
【详解】
解:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,
依题意,得:,解得:.
答:A种商品每件的进价为40元,B种商品每件的进价为25元.
(2)设购进A种商品m件,则购进B种商品(50-m)件,
依题意,得:(48-40)m+(31-25)(50-m)≥360,解得:m≥30.
答:A种商品至少购进30件.
【点睛】
此题考查了二元一次方程组应用题和一元一次不等式应用题,解题的关键是正确分析题目中的等量关系列出方程或不等式求解.
2020-2021学年第五章 二元一次方程组综合与测试一课一练: 这是一份2020-2021学年第五章 二元一次方程组综合与测试一课一练,共20页。
北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题,共18页。试卷主要包含了已知是方程的解,则k的值为,下列是二元一次方程的是,如图,9个大小,二元一次方程组的解是等内容,欢迎下载使用。
北京课改版七年级下册第五章 二元一次方程组综合与测试课时训练: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课时训练,共19页。试卷主要包含了如果与是同类项,那么的值是,如图,9个大小等内容,欢迎下载使用。