数学八年级下册第十七章 方差与频数分布综合与测试课后作业题
展开京改版八年级数学下册第十七章方差与频数分布必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )
A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.4
2、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数和方差s2.
| 甲 | 乙 | 丙 | 丁 |
平均数(单位:秒) | 52 | m | 52 | 50 |
方差s2(单位:秒2) | 4.5 | n | 12.5 | 17.5 |
根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是( )
A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=18
3、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()
A.14 B.12 C.9 D.8
4、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
5、一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是( )
A.众数 B.平均数 C.中位数 D.方差
6、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:
| 甲 | 乙 | 丙 |
平均数/分 | 96 | 95 | 97 |
方差 | 0.4 | 2 | 2 |
丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )
A.甲 B.乙 C.丙 D.丁
7、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )
A.样本中位数是200元
B.样本容量是20
C.该企业员工捐款金额的极差是450元
D.该企业员工最大捐款金额是500元
8、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是( )
A. B. C. D.
9、年将在北京--张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,选手成绩更稳定的是( )
A.甲 B.乙 C.都一样 D.不能确定
10、下列一组数据:-2、-1、0、1、2的平均数和方差分别是( )
A.0和2 B.0和 C.0和1 D.0和0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.
2、现将一组数据:21,25,23,25,27,29,25,30,28,29,26,24,27,25,26,22,24,25,26,28分成五组,其中26.5<x<28.5的频数是____.
3、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_____.
4、一组数据的平均数是4,则这组数据的方差是_________.
5、已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是5,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差的和为_______.
三、解答题(5小题,每小题10分,共计50分)
1、中国共产党第十九届中央委员会第六次全体会议,于2021年11月8日至11日在北京举行.为了加强学生对时事政治的学习了解,某校开展了全校学生学习时事政治活动并进行了时事政治知识竞赛,从八、九年级中各随机抽取了20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:
八年级抽取的学生的竞赛成绩:5,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,9,10,10,10.
八、九年级抽取学生的竞赛成绩统计表.
年级 | 八年级 | 九年级 |
平均数 | 7.8 | 7.8 |
中位数 | a | b |
众数 | 7 | c |
优秀率 | 30% | 35% |
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,c= ;
(2)估计该校八年级1500名学生中竞赛成绩达到8分及以上的人数;
(3)根据以上数据分析,从一个方面评价两个年级学生时事政治的竞赛成绩谁更优异,
2、本校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.
(1)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数;
本校部分学生体质健康测试成绩统计图
(2)本校规定达到3分才算合格. 已知本校共有学生1600人,根据以上数据估计本校学生体质健康测试成绩达到合格的人数;
(3)为了更好贯彻落实健康第一的指导思想,请你根据以上数据对本校体育老师提出一条合理的建议.
3、某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
请根据图中提供的信息,完成下列问题:
(1)在这次调查中,一共抽查了 名学生;
(2)“羽毛球”部分的学生有 人,并补全统计图;
(3)“足球”部分所对应的圆心角为 度;
(4)如果该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?
4、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:
(1)根据以上信息,整理分析数据如表:
| 平均成绩(环) | 众数(环) | 中位数 | 方差 |
甲 | 7 | a | 7 | c |
乙 | 7 | 8 | b | 4.2 |
填空:a= ,b= ,c= ;
(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好.
5、在疫情防控期间,某市防控指挥部想了解各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们志愿服务的时间进行了统计,整理并绘制成如下的统计表和不完整的统计图.
A | a | |
B | 10 | |
C | 16 | |
D | 20 |
(1)本次被抽取的教职工共有 名;
(2)表中a = ,扇形统计图中“C”部分所占百分比为 %;
(3)若该市共有30 000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?
-参考答案-
一、单选题
1、B
【分析】
根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.
【详解】
解:小明进球的频率是30÷50=0.6,
故选:B.
【点睛】
此题主要考查了频率,关键是掌握计算方法.
2、A
【分析】
根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.
【详解】
解:因为乙选手是这四名选手中成绩最好的,
所以乙选手的成绩的平均数最小,
又因为乙选手发挥最稳定,
所以乙选手成绩的方差最小.
故选:A.
【点睛】
本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.
3、B
【分析】
根据样本频数直方图、样本容量的性质计算,即可得到答案.
【详解】
根据题意,第二组的频数是:
故选:B.
【点睛】
本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解.
4、C
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
5、A
【分析】
依据平均数、中位数、众数、方差的定义即可得到结论.
【详解】
解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;
B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;
C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;
D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;
故选:A.
【点睛】
本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.
6、D
【分析】
首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.
【详解】
解:根据题意,
丁同学的平均分为:,
方差为:;
∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,
∴应该选择丁同学去参赛;
故选:D.
【点睛】
本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7、A
【详解】
解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;
B、共20人,样本容量为20,故选项B正确;
C、极差为500﹣50=450元,故选项C正确;
D、该企业员工最大捐款金额是500元,故选项D正确.
故选:A .
【点睛】
本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.
8、D
【分析】
首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.
【详解】
解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,
选项A中包含的数据有:6和7,其频数为2;
选项B中包含的数据有:8,8,8,9,9,9,其频数为6;
选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;
选项D中包含的数据有:12,12,12,13,其频数为4,
故选:D.
【点睛】
本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.
9、A
【分析】
分别计算计算出甲乙选手的方差,根据方差越小数据越稳定解答即可.
【详解】
解:甲选手平均数为:,
乙选手平均数为:,
甲选手的方差为:,
乙选手的方差为:
∵可得出:,
则甲选手的成绩更稳定,
故选:A.
【点睛】
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
10、A
【分析】
根据平均数公式与方差公式计算即可.
【详解】
解:,
.
故选择A.
【点睛】
本题考查平均数与方差,掌握平均数与方差公式是解题关键.
二、填空题
1、50 0.16
【分析】
根据总数等于频数除以总数,频率等于频数除以总数求解即可.
【详解】
依题意(人)
故答案为:
【点睛】
本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.
2、4
【分析】
先将各数据划记到对应的小组,再正确数出第四组26.5~28.5的频数即可.
【详解】
解:这组数据中26.5<x<28.5的数据,即是数据27、28出现的次数,
通过统计数据27、28共出现4次,
故答案为:4.
【点睛】
本题考查频率、频数的概念,一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.
3、0.4
【分析】
先求出第四小组的频数,再根据频率=频数÷样本容量计算即可;
【详解】
由题可知:第四小组的频数,
频率=频数÷样本容量;
故答案是0.4.
【点睛】
本题主要考查了频率和频数的计算,准确分析计算是解题的关键.
4、
【分析】
先根据平均数的定义求出x的值,再利用方差的定义列式计算即可.
【详解】
解:因为数据4,3,6,x的平均数是4,
可得:,
解得:x=3,
方差为:=,
故答案为:.
【点睛】
本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.
5、49
【分析】
根据平均数及方差知识,直接计算即可.
【详解】
∵数据,,,,的平均数是2,
,即,
,,,,的平均数为:
,
∵数据,,,,的方差是5,
,
即,,
,,,,的方差为:
,
,
,
,
,
平均数和方差的和为,
故答案为:49.
【点睛】
本题是对平均数及方差知识的考查,熟练掌握平均数及方差计算是解决本题的关键.
三、解答题
1、(1)7.5;8;8.(2)750人;(3)从优秀率来评价两个年级学生时事政治的竞赛成绩,九年级更优异.
【分析】
(1)根据题意,利用表格和扇形统计图给出的数据,即可求出a、b、c的值;
(2)先求出样本中八年级8分及以上的频率,然后估算总体的数量即可;
(3)根据两个年级的优秀率,即可进行判断.
【详解】
解:(1)根据题意,八年级的数据中,
中位数为:;
九年级的扇形图数据中,8分出现最多,中位数落在8分内,
∴中位数:;
众数为:;
故答案为:7.5;8;8.
(2)样本中八年级8分及以上的频率为:,
∴该校八年级1500名学生中竞赛成绩达到8分及以上的人数有:
(人);
(3)根据数据可知,
八年级的优秀率为30%;九年级的优秀率为35%;
∴从优秀率来评价两个年级学生时事政治的竞赛成绩,九年级更优异.
【点睛】
本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.
2、(1)平均数是2.75分、中位数是3分,众数是3分;(2)1000人;(3)(加强体育锻炼)答案不唯一.
【分析】
(1)根据平均数,众数及中位数的求法依次计算即可;
(2)利用总人数乘以合格人数占抽查总人数的比例即可;
(3)抓住健康第一,建议合理即可.
【详解】
解:(1)平均数为:;
抽查的120人中,成绩是3分出现的次数最多,共出现45次,因此众数是3分;
将这120人的得分从小到大排列处在60,61两个位置的分数都是3分,因此中位数是3分;
答:这组数据的平均数是2.75分,中位数是3分,众数是3分;
(2)估计本校学生体质健康测试成绩达到合格的人数为:
(人),
∴估计本校学生体质健康测试成绩达到合格的人数为1000人;
(3)加强体育锻炼(答案不唯一,合理即可).
【点睛】
题目主要考查从条形统计图获取信息,计算平均数,中位数,众数及利用部分估计整体,熟练掌握各个数据的计算方法是解题关键.
3、(1);(2);作图见解析;(3);(4)
【分析】
(1)篮球人数为,占总人数的,可以得到调查学生总人数;
(2)羽毛球部分的学生占总人数的,可得到羽毛球部分的学生人数;
(3)足球部分为人,占总人数的,占圆心角的,可得到足球部分对应圆心角的大小;
(4)用喜欢跳绳部分的比例乘以该学校的总人数,就能估计出该校喜欢跳绳的总人数.
【详解】
解(1)设调查学生总人数为
则有
解得
故答案为.
(2)羽毛球部分的学生占总人数的,
羽毛球的人数为
故答案为.
统计图补充如图所示:
(3)由图知足球部分的人数为
足球部分占总人数的
足球部分对应圆心角的大小为
故答案为.
(4)跳绳人数占比为
该校喜欢跳绳的人数有(人);
答:该校有240名学生喜欢跳绳
【点睛】
本题考察了统计图.解题的关键与难点在于理清图中数据的含义以及数据之间的关系.
4、(1),,;(2)答案见解析.
【分析】
(1)分别根据平均数,方差,中位数的定义求解即可;
(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.
【详解】
解:(1)由频数直方图可得:甲的成绩如下:
其中环出现了4次,所以众数是环,
环
由折线统计图可得:按从小到大排序为:
所以中位数为:.
故答案为:,,;
(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.
【点睛】
本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.
5、(1)50;(2)4,32;(3)21600
【分析】
(1)由B等级的人数及其所占百分比即可求出被调查的总人数;
(2)用总人数减去B、C、D的人数即可得出a的值,用C等级人数除以被调查总人数即可得出其对应百分比;
(3)用总人数乘以样本中C、D人数所占比例即可.
【详解】
解:(1)本次被抽取的教职工共有10÷20%=50(名),
故答案为:50;
(2)a=50−(10+16+20)=4,
扇形统计图中“C”部分所占百分比为×100%=32%,
故答案为:4,32;
(3)志愿服务时间多于60小时的教职工大约有30000×=21600(人).
【点睛】
此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息.
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题,共21页。试卷主要包含了篮球队5名场上队员的身高等内容,欢迎下载使用。
数学八年级下册第十七章 方差与频数分布综合与测试复习练习题: 这是一份数学八年级下册第十七章 方差与频数分布综合与测试复习练习题,共20页。试卷主要包含了下列一组数据等内容,欢迎下载使用。
北京课改版八年级下册第十七章 方差与频数分布综合与测试习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共21页。