2020-2021学年第十七章 方差与频数分布综合与测试当堂达标检测题
展开
这是一份2020-2021学年第十七章 方差与频数分布综合与测试当堂达标检测题,共18页。试卷主要包含了在频数分布表中,所有频数之和等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A.众数 B.中位数 C.平均数 D.方差2、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )A., B., C., D.,3、甲,乙,丙,丁四个小组的同学分别参加了班级组织的中华古诗词知识竞赛,四个小组的平均分相同,其方差如下表.若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选( )组名甲乙丙丁方差4.33.243.6A.甲 B.乙 C.丙 D.丁4、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( )A.众数是 B.中位数是 C.平均数是 D.方差是5、在频数分布表中,所有频数之和( )A.是1 B.等于所有数据的个数C.与所有数据的个数无关 D.小于所有数据的个数6、在2020东京奥运会女子10米气步枪的项目中,杨倩以251.8环的好成绩一举夺冠,为中国体育代表团斩获奥运首金.现将决赛淘汰阶段中国选手杨倩每一轮(两轮之和)的数据进行汇总,并进行一定的数据处理作出以下表格.姓名第1轮第2轮第3轮第4轮第5轮第6轮第7轮总计杨倩20.921.721.020.621.121.320.5147.1根据表格信息可以得到杨倩在决赛淘汰阶段成绩的极差和中位数分别为多少( )A.1.1,20.6 B.1.2,20.6 C.1.2,21.0 D.1.1,21.37、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )A.平均数是89 B.众数是93C.中位数是89 D.方差是2.88、用计算器计算方差时,要首先进入统计计算状态,需要按键( )A. B.C. D.9、某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在82.5kg及以上的生猪有( )A.20头 B.50头 C.140头 D.200头10、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据的极差是8,则另一组数据的极差是_______.2、若一组数据,,…的平均数是2,方差是1.则,,…的平均数是_______,方差是_______.3、一组数据:2021,2021,2021,2021,2021,2021的方差是______.4、某班级有45名学生在期中考试学情分析中,分数段在70~79分的频率为0.4,则该班级在这个分数段内的学生有 _____人.5、对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的______,方差则反映一组数据在平均数左右的______,因此从平均数看或从方差看,各有长处.三、解答题(5小题,每小题10分,共计50分)1、九(1)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):甲897101091010107乙87981010910910(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队成绩的平均数和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是 队.2、在一组数据中,各数据与它们的平均数的差的绝对值的平均数,即叫做这组数据的“平均差”,“平均差”也能描述一组数据的离散程度,“平均差”越大,说明数据的离散程度越大.(1)分别计算下列两组数据的“平均差”,并根据计算结果比较这两组数据的稳定性; 甲:9,11,8,12,7,13,6,14,10,10.乙:8,9,10,11,7,12,9,11,10,13.(2)分别计算甲、乙两组数据的方差,并根据计算结果比较这两组数据的稳定性.3、 “中国梦”是中华民族每一个人的梦,各中小学开展经典诵读活动,是“中国梦”教育这一宏大乐章里的响亮音符某学校在经典诵读活动中,对全校学生用A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行评价,现从中抽取若干名学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少名学生进行调查;(2)将图甲中的条形统计图补充完整;(3)求出图乙中D等级所对应的扇形圆心角的度数;(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生获得B等级的评价.4、某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘成如图统计图.请你结合图中信息解答下列问题:(1)该校共调查了多少名学生;(2)补全条形统计图;(3)若该校共有2000名学生,估计对“卓越”最感兴趣的学生有多少人?5、在精准扶贫的政策下,某贫困户在当地政府的支持和帮助下办起了养殖业,经过一段时间的精心饲养,总量为6000只的一批兔子达到了出售标准,现从这批兔中随机选择部分进行称重,将得到的数据用下列统计图表示(频数分布直方图每组含前一个边界值,不含后一个边界值).根据以上信息,解答下列问题:(1)补全图中的频数分布直方图;(2)估计这批兔子中质量不小于1.7kg的有多少只. -参考答案-一、单选题1、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.2、C【分析】直接利用样本容量的定义以及结合频数除以总数=频率得出答案.【详解】解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,∴此抽样样本中,样本容量为:100,不合格的频率是:=0.08.故选:C.【点睛】本题主要考查了频数与频率,正确掌握频率求法是解题关键.3、B【分析】根据方差的意义求解即可.【详解】解:由表格知,乙的方差最小,所以若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选乙,故选:B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.4、D【分析】根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可【详解】根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;这组数据的中位数为:6,故B选项正确,不符合题意;这组数据的平均数为,故C选项正确,不符合题意;这组数据的方差为:,故D选项不正确,符合题意.故选D.【点睛】本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:.5、B【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解.【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确 ;B. 频数之和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关 ,故选项C不正确;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确.故选择B.【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键.6、C【分析】根据极差和中位数的求解方法,求解即可,极差是一组数据中最大数减去最小数,中位数为是指一组数据从小到大排列,位于中间的那个数,数据个数为奇数时,中位数为中间的数,数据个数为偶数时,中位数为中间两数的平均值.【详解】解:成绩从小到大依次为:、、、、、、极差为中位数为故选:C【点睛】此题考查了极差和中位数的计算,解题的关键是掌握极差和中位数的有关概念.7、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为,众数为90,中位数为90,故选项A、B、C错误;方差为,故选项D正确.故选:D.【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.8、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求的功能键,即可得出结果.故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.9、B【分析】在横轴找到82.5kg的位置,由图可知在80与85的中间,即第三个与第三个长方形的前一个边界值开始算起,将后2组频数相加,即可求解.【详解】依题意,质量在82.5kg及以上的生猪有:(头)故选B.【点睛】本题考查了频数直方图的应用,根据频数直方图获取信息是解题的关键.10、A【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a条鱼,发现其中带标记的鱼有b条,
∴有标记的鱼占,
∵共有n条鱼做上标记,
∴鱼塘中估计有n÷=(条).故选:A.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.二、填空题1、16【分析】因为x1,x2,x3,…,xn的极差是8,设xn-x1=8,则2x1+1,2x2+1,2x3+1,…,2xn+1极差为2(xn-x1).【详解】解:∵x1,x2,x3,…,xn的极差是8,不妨设xn-x1=8,∴2x1+1,2x2+1,2x3+1,…,2xn+1极差为2(xn-x1)=2×8=16.故答案为:16.【点睛】本题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.2、8 9 【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x1,x2,…xn的平均数是2,∴数据3x1+2,3x2+2,…+3xn+2的平均数是3×2+2=8;∵数据x1,x2,…xn的方差为1,∴数据3x1,3x2,3x3,……,3xn的方差是1×32=9,∴数据3x1+2,3x2+2,…+3xn+2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.3、0【分析】根据方差的定义求解.【详解】∵这一组数据都一样∴平均数为2021∴方差=故答案为:0.【点睛】本题考查方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、18【分析】根据频数总数×频率,直接求解即可.【详解】依题意该班级在在70~79分数段内的学生有(人).故答案为:18.【点睛】本题考查了根据描述求频数,掌握频数、频率、总数之间的关系是解题的关键.5、一般水平 波动大小 【分析】根据平均数和方差的意义进行回答即可.【详解】解:平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,故答案为:一般水平;波动大小【点睛】本题考查了平均数和方差的区别,熟练掌握平均数和方差的意义是解答本题的关键.三、解答题1、(1)9.5,10;(2)平均成绩为9分,方差为1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是: [4×(10-9)2+2×(8-9)2+(7-9)2+3×(9-9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2、(1)T甲=2,T乙=1.4,乙组数据更稳定;(2)=6,=3,乙组数据更稳定【分析】(1)先求出甲乙两组的平均数,再利用平均差公式求出甲乙两组的平均差,再比较大小即可;(2)根据方差公式求甲乙两组的方差,再比较大小即可.【详解】解:(1)∵,∴…,∵,∴…,∴,∴乙组数据更稳定;(2)∵,,,∴乙组数据更稳定.【点睛】本题考查平均数,新定义平均差,方差,掌握平均数,新定义平均差,方差是解题关键.3、(1)100名;(2)图见解析;(3);(4)700.【分析】(1)根据等级的条形统计图和扇形统计图的信息即可得;(2)根据(1)的结果,求出等级的学生人数,再补全条形统计图即可;(3)利用乘以等级所占的百分比即可得;(4)利用2000乘以等级所占的百分比即可得.【详解】解:(1)抽取调查的学生总人数为(名),答:共抽取了100名学生进行调查;(2)等级的人数为(名),则补全条形统计图如下:(3)图乙中等级所对应的扇形圆心角的度数为,答:图乙中等级所对应的扇形圆心角的度数;(4)(名),答:估计有700名学生获得等级的评价.【点睛】本题考查了条形统计图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键.4、(1)500人;(2)见解析;(3)300人【分析】(1)用最感兴趣为“包容”的人数除以它所占的百分比即可得到调查学生的总数;
(2)用总人数分别减去其他各项的人数得到最感兴趣为“尚德”的人数为100名;
(3)用最感兴趣为“卓越”所占百分比乘以2000即可.【详解】解:(1)150÷30%=500(名),∴该校共调查了500名学生;(2)最感兴趣为“尚德”的人数=500−150−50−125−75=100(名),
补全图形如图:
(3)∵最感兴趣为“卓越”所占百分比=×100%=15%,∴2000×15%=300(名)
所以该校共有2000名学生,估计全校对“卓越”最感兴趣的人数为300名.【点睛】本题考查了条形统计图和扇形统计图的综合,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.5、(1)见解析;(2)960只【分析】(1)先根据D组的频数和占比求出抽取兔子的数量,然后求出C组兔子的数量,最后补全统计图即可;(2)先求出样本中这批兔子中质量不小于1.7kg的百分比,然后估计总体即可.【详解】解:(1)抽取兔子的数量是,则质量在“C”部分的兔子数量是(只).补全频数分布直方图如下:(2)由题意得:这批兔子中质量不小于1.7kg的大约有(只).【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,补全条形统计图,解题的关键在于能够正确理解题目所示的统计图.
相关试卷
这是一份数学八年级下册第十七章 方差与频数分布综合与测试课时作业,共22页。
这是一份数学第十七章 方差与频数分布综合与测试课时作业,共21页。试卷主要包含了在一次投篮训练中,甲,数学老师将本班学生的身高数据等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂检测题,共21页。