![2022年必考点解析京改版八年级数学下册第十七章方差与频数分布月考试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12703208/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析京改版八年级数学下册第十七章方差与频数分布月考试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12703208/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析京改版八年级数学下册第十七章方差与频数分布月考试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12703208/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步练习题
展开
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步练习题,共22页。
京改版八年级数学下册第十七章方差与频数分布月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A.甲比乙稳定 B.乙比甲稳定C.甲与乙一样稳定 D.无法确定2、甲,乙,丙,丁四个小组的同学分别参加了班级组织的中华古诗词知识竞赛,四个小组的平均分相同,其方差如下表.若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选( )组名甲乙丙丁方差4.33.243.6A.甲 B.乙 C.丙 D.丁3、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;4、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2= [(x188)2+(x288)2+…+(x888)2],以下说法不一定正确的是( )A.育才中学参赛选手的平均成绩为88分B.育才中学一共派出了八名选手参加C.育才中学参赛选手的中位数为88分D.育才中学参赛选手比赛成绩团体总分为704分5、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )A., B., C., D.,6、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是( )A.甲 B.乙 C.丙 D.丁7、某体育场大约能容纳万名观众,在一次足球比赛中,上座率为.估一估,大约有多少名观众观看了比赛?( )A. B. C.8、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( ) 甲乙丙丁平均数/m180180185185方差8.23.9753.9A.甲 B.乙 C.丙 D.丁9、下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在小组,而不在小组),根据图形提供的信息,下列说法中错误的是( )
A.该学校教职工总人数是50人B.年龄在小组的教职工人数占总人数的20%C.某教师40岁,则全校恰有10名教职工比他年轻D.教职工年龄分布最集中的在这一组10、下列说法正确的是( )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在方差计算公式中,可以看出15表示这组数据的______________.2、 “绿水青山就是金山银山”为了响应党中央对环境保护的号召,某校要从报名的甲、乙、丙三人中选取一人去参加南宁市举办的环保演讲比赛经过两轮初赛后,甲、乙、丙三人的平均成绩都是89,方差分别是,,.你认为__________参加决赛比较合适.3、甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为_____(填>或<).4、某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差甲45135149180乙45135151130下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)其中正确的命题是___________.(只填序号)5、如果一组数据,,…,的方差是2,那么一组新数据,,…,的方差是__________.三、解答题(5小题,每小题10分,共计50分)1、为了解八年级学生的数学知识技能水平,教育局组织了一次数学知识竞赛,满分为100分.为掌握甲、乙两校学生本次竞赛的情况,李老师分别从两个学校的成绩中都随机抽取20个进行整理和分析.李老师将抽取的成绩用x表示,分为A、B、C、D、E五个等级(A:;B:;C:;D:;E:),已知部分信息如下:甲校抽取的20名同学的成绩(单位:分)为:91,83,92,80,79,82,82,77,82,80,75,63,56,85,91,70,82,76,64,82已知乙校抽取的成绩中,有1名同学的成绩不超过60分.乙校抽取的学生成绩扇形统计图甲、乙两校抽取的学生成绩数据统计表班级甲校乙校平均数78.678.4中位数b80众数c80根据以上信息,解答下列问题:(1)直接写出上述图表中a、b、c的值: , , ;(2)不用计算,根据统计表,判断哪个学校的成绩好一些?并说明理由;(3)若甲、乙两校的八年级学生人数分别为420人、450人,且都参加了此次知识竞赛,估计本次竞赛中,两个学校共有多少人的成绩达到A级?2、某校在八年级(1)班学生中开展对于“我国国家公祭日(12月13日)”知晓情况的问卷调查.问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.请根据图中信息解答下列问题:(1)求该班参与问卷调查的人数. (2)把条形统计图补充完整. (3)求C类人数占参与问卷调查人数的百分比. (4)求扇形统计图中A类所对应扇形圆心角的度数.3、甲、乙两人在5次打靶测试中命中的环数如下: 平均数众数中位数方差甲8 80.4乙 9 3.2甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写表格;(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?4、甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:选手组数12345678910甲98908798999192969896乙85918997969798969898(1)根据上表数据,完成下列分析表: 平均数众数中位数方差极差甲94.5 9616.6512乙94.5 18.65 (2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么?5、某校七年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:组别发言次数nABCDEF(1)直接写出随机抽取学生的人数为______人;(2)直接补全频数直方图;(3)求扇形统计图中B部分所对应的百分比和F部分扇形圆心角的度数;(4)该校七年级共有学生1000人,请估计七年级学生这天在课堂上发言次数大于等于12次的人数. -参考答案-一、单选题1、C【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.2、B【分析】根据方差的意义求解即可.【详解】解:由表格知,乙的方差最小,所以若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选乙,故选:B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.3、D【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:,A选项正确;60~80分钟的人数为:人,先对数据排序后可得:最中间的数在第20,21之间,,,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:人,估算全校人数中每天超过1小时的人数为:人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.4、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S2= [(x1−88)2+(x2−88)2+…+(x8−88)2],∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.5、C【分析】直接利用样本容量的定义以及结合频数除以总数=频率得出答案.【详解】解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,∴此抽样样本中,样本容量为:100,不合格的频率是:=0.08.故选:C.【点睛】本题主要考查了频数与频率,正确掌握频率求法是解题关键.6、A【分析】根据方差的意义求解即可.【详解】解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,∴S甲2<S乙2<S丙2<S丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.7、B【分析】根据体育场的容量×上座率计算即可.【详解】解:∵某体育场大约能容纳万名观众,上座率为.∴观众观看这一次足球比赛人数为:30000×68%=20400人,与20000接近.故选:B.【点睛】本题考查频数频率与总数的关系,掌握频数=总数×频率是解题关键.8、D【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵,∴从丙和丁中选择一人参加比赛,∵S丙2>S丁2,∴选择丁参赛,故选:D.【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.9、C【分析】各组的频数的和就是总人数,再根据百分比、众数、中位数的定义逐一解题.【详解】解:A. 该学校教职工总人数是4+6+11+10+9+6+4=50人,正确,故A不符合题意;B. 年龄在小组的教职工人数占总人数的20%,正确,故B不符合题意;C. 教职工年龄的中位数在这一组,某教师40岁,则全校恰有10名教职工比他年轻说法是错误的,故C符合题意;D. 教职工年龄分布最集中的在这一组,正确,故D不符合题意,故选:C.【点睛】本题考查频数分布直方图,是重要考点,从图中获取正确信息是解题关键.10、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.二、填空题1、平均数【分析】方差是由每个数据与平均值的差的平方之和除以总数得到,由此判断即可.【详解】解:根据方差计算公式可知,公式中15是这组数据的平均数,故答案为:平均数.【点睛】本题考查方差公式的理解,理解方差公式中每个数据的含义是解题关键.2、丙【分析】根据方差越小,成绩越稳定即可判断.【详解】解:∵,,,且1.5<3.3<12,,丙的成绩最稳定,丙参加决赛比较合适,故答案为:丙.【点睛】本题主要考查方差的意义,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3、>【分析】根据数据的波动越小,方差越小,越稳定,反之数据的波动越大,方差越大,再结合图象即可填空.【详解】由图可知甲的数据波动相对较大,乙的数据波动相对较小.∴甲的方差大于乙的方差.故答案为:>.【点睛】本题考查根据数据的波动程度判断方差的大小.掌握数据波动程度和方差的关系是解答本题的关键.4、(2)(3)【分析】平均数表示一组数据的平均程度,根据表示确定两班的平均成绩,进而判断说法(1);由于方差是用来衡量一组数据波动大小的量,通过比较两班的方差,就能对(2)的说法进行分析;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),进而判断(3)的正误.【详解】解:两个班的平均成绩均为135次,故(1)错误;方差表示数据的波动大小,甲班的方差大于乙的,说明甲班的成绩波动大,故(2)正确;中位数是数据按从小到大排列后,中间的数或中间两数的平均数,甲班的中位数小于乙班的,说明甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数,故(3)正确.综上可得三个说法中只有(2)(3)正确.故答案为:(2)(3).【点睛】本题考查了平均数、中位数、方差的意义,平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5、【分析】设一组数据,,…,的平均数为,方差是,则另一组数据,,…,的平均数为,方差是,代入方差公式,计算即可.【详解】解:设一组数据,,…,的平均数为,方差是,则另一组数据,,…,的平均数为,方差是,∵,∴,则,∴,∴,.【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据,,…,的方差是,那么另一组数据,,,的方差是.三、解答题1、(1),,;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)108人【分析】(1)B等的人数=20-20×(10+10+35)-1=8,于是,可以确定a值;先将数据排序,计算第10个,11个数据的平均数即可得到b;确定出现次数最多的数据即可;(2)比较平均数,中位数,众数的大小,判断即可;(3)甲校约有人,乙校约有人,求和即可.【详解】(1)∵B等的人数=20-20×(10+10+35)-1=8,∴,∴a=40;∵第10个,11个数据是80,82,∴b=;∵82出现次数最多,是5次,∴众数c=82;故答案为:40,81,82;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些; (3)由题意,甲校约有人,乙校约有人,∴两校共约有63+45=108人的成绩达到A级.【点睛】本题考查了扇形统计图,众数,平均数,中位数,样本估计总体的思想,熟练掌握三数的定义,并灵活计算是解题的关键.2、(1)50人;(2)见解析;(3)20%;(4)108°【分析】(1)利用样本估计总体,将D类型的人数与其所占的百分比相除即可;(2)用该班参与问卷调查的人数减去A、B、D类的人数即可;(3)用C类人数除以总调查人数再乘以100%即可;(4)求出A类人数占总调查人数的百分比,再乘以即可.【详解】(1)20÷40%=50(人),所以该班参与问卷调查的人数为50人;(2)C类人数为(人),补全条形统计图如下: (3),所以C类人数占参与问卷调查人数的20%;(4),所以A类所对应扇形圆心角的度数为108°.【点睛】本题考查了数据的收集与统计图,结合条形与扇形统计图准确的获取数据信息是解题的关键.3、(1)见解析;(2)见解析【分析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=(5+9+7+10+9)=8,把这些数从小到大排列5,7,9,9,10,则乙的中位数为9.故填表如下: 平均数众数中位数方差甲8880.4乙8993.2故答案为:8,8,9; (2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.4、(1)见解析;(2)选择甲选手参加比赛,理由见解析【分析】(1)分别根据众数、中位数和极差的概念填充表格即可;(2)根据方差即可确定选择哪位选手参加比赛.【详解】解:(1)根据表中甲、乙两名选手的成绩可知甲、乙的成绩的众数均为98;将乙选手的成绩从小到大排列可得:85,89,91,96,96,97,97,98,98,98,∴乙的中位数为:;乙选手成绩的极差为:98-85=13.填充表格如下所示: 平均数众数中位数方差极差甲94.5989616.6512乙94.59896.518.6513(2)∵S甲2<S乙2,∴甲的成绩比较稳定,∴选择甲选手参加比赛.【点睛】本题考查了众数、中位数和极差的概念及方差在实际生活中的应用,利用方差可以确定数据的波动大小,也就是数据的稳定性,由此即可解决问题;同时该题的计算量比较大,要注意细心运算.5、(1)50;(2)补全频数直方图见解析;(3)B部分所对应的百分比;F部分扇形圆心角的度数为;(4)180人.【分析】(1)用A组频数除以频率,即可求得抽取人数为50人;(2)用50乘以C组所占百分比求出频数,用50减A、B、C、D、E组频数,即可求解,补全直方图即可;(3)用B组频数除以50,即可求解;用F组频数除以50再乘以360°即可求解;(4)用样本估计总体,用1000乘以样本中发言次数大于等于12的人数所占百分比,问题得解.【详解】(1)3÷6%=50,故答案为:50; (2)50×30%=15, 50-3-10-15-13-4=5,补全频数直方图如下;(3)B部分所对应的百分比,F部分扇形圆心角的度数为;(4)(人),答:估计该校七年级学生1000人中,这天在课堂上发言次数大于等于12次的人数为180人.【点睛】本题考查了直方图,扇形图,用样本估计总体等知识,理解直方图、扇形图的意义,根据两种统计图中提供的公共信息求出样本容量是解题关键.
相关试卷
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共20页。试卷主要包含了一组数据1等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共23页。试卷主要包含了在一次射击训练中,甲,一组数据等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试,共24页。试卷主要包含了2020年某果园随机从甲,下列说法正确的是,数学老师将本班学生的身高数据等内容,欢迎下载使用。