数学八年级下册第十七章 方差与频数分布综合与测试测试题
展开京改版八年级数学下册第十七章方差与频数分布章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
2、某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中不合格产品约为( )
A.50件 B.500件 C.5000件 D.50000件
3、下列说法中正确的是( ).
A.想了解某河段的水质,宜采用全面调查 B.想了解某种饮料中含色素的情况,宜采用抽样调查
C.数据1,1,2,2,3的众数是3 D.一组数据的波动越大,方差越小
4、下列说法正确的是( )
A.调查“行云二号”各零部件的质量适宜采用抽样调查方式
B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83
C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖
D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定
5、某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在82.5kg及以上的生猪有( )
A.20头 B.50头 C.140头 D.200头
6、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )
周阅读用时数(小时) | 4 | 5 | 8 | 12 |
学生人数(人) | 3 | 4 | 2 | 1 |
A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是6
7、水稻科研人员为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取60株,分别量出每株高度,发现两组秧苗的平均高度和中位数均相同,甲、乙的方差分别是3.6,6.3,则下列说法正确的是( )
A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐
C.甲、乙出苗一样整齐 D.无法确定甲、乙出苗谁更整齐
8、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )
A.平均数是89 B.众数是93
C.中位数是89 D.方差是2.8
9、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2= [(x188)2+(x288)2+…+(x888)2],以下说法不一定正确的是( )
A.育才中学参赛选手的平均成绩为88分
B.育才中学一共派出了八名选手参加
C.育才中学参赛选手的中位数为88分
D.育才中学参赛选手比赛成绩团体总分为704分
10、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.
2、一组数据6,2,1,3的极差为__________.
3、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.
4、若一组数据,,,…,的方差为4.5,则另一组数据2,2,2,…,2的方差为____.
5、若一组数据,,…的平均数是2,方差是1.则,,…的平均数是_______,方差是_______.
三、解答题(5小题,每小题10分,共计50分)
1、 “足球运球”是中考体育选考项目之一.某学校为了解今年九年级学生足球运球的情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有500名学生,请估计足球运球测试成绩达到A级的学生有多少人?
2、数学小组对当地甲、乙两家网约车公司司机的月收入情况进行了抽样调查.两家公司分别随机抽取10名司机,他们的月收入(单位:千元)情况如图所示.
将以上信息整理分析如下:
| 平均数 | 中位数 | 众数 | 方差 |
甲公司 | a | 7 | c | d |
乙公司 | 7 | b | 5 | 7.6 |
(1)填空:a=_____;b=_____;c=_____;d=_____;
(2)某人计划从甲、乙公司中选择一家做网约车司机,你建议他选哪家公司?说明理由.
3、随着经济的发展,我们身边的环境受到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:
废旧电池数/节 | 3 | 4 | 5 | 6 | 8 |
人数/人 | 10 | 15 | 12 | 7 | 6 |
(1)这50名学生平均每人收集废旧电池多少节?
(2)这组废旧电池节数的中位数,众数分别是多少?
(3)根据统计发现,本次收集的各种废旧电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?
4、中考改革是为了进一步推进高中阶段学校考试招生制度,眉山市在初中毕业生学业考试、综合素质评价、高中招生录取等方面进行了积极探索,对学生各科成绩实行等级制,即A、B、C、D、E五个等级,根据某班一次数学模拟考试成绩按照等级制绘制了两幅统计图(均不完整),请根据统计图提供的信息解答下列问题.
(1)本次模拟考试该班学生有_____人;
(2)补全条形统计图;
(3)扇形统计图中D等级对应扇形的圆心角的度数为______;
(4)该校共有800名学生,根据统计图估计该校A等级的学生人数.
5、甲、乙两人在5次打靶测试中命中的环数如下:
| 平均数 | 众数 | 中位数 | 方差 |
甲 | 8 |
| 8 | 0.4 |
乙 |
| 9 |
| 3.2 |
甲:8,8,7,8,9;乙:5,9,7,10,9.
(1)填写表格;
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
-参考答案-
一、单选题
1、A
【分析】
根据方差的意义求解即可.
【详解】
解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,
∴S甲2<S乙2<S丙2<S丁2,
∴这四名学生的数学成绩最稳定的是甲,
故选:A.
【点睛】
本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.
2、C
【分析】
抽取的100件进行质检,发现其中有5件不合格,由此即可求出这类产品的不合格率是5%,然后利用样本估计总体的思想,即可知道不合格率是5%,即可求出该厂这10万件产品中不合格品的件数.
【详解】
解:∵某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,
∴不合格率为5÷100=5%,
∴估计该厂这10万件产品中不合格品约为10×5%=0.5万件,
故选C.
【点睛】
此题主要考查了样本估计总体的思想,此题利用样本的不合格率去估计总体的不合格率.
3、B
【分析】
分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.
【详解】
解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;
B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;
C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;
D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
4、B
【分析】
分别对各个选项进行判断,即可得出结论.
【详解】
解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;
B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;
C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;
D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;
故选:B.
【点睛】
本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.
5、B
【分析】
在横轴找到82.5kg的位置,由图可知在80与85的中间,即第三个与第三个长方形的前一个边界值开始算起,将后2组频数相加,即可求解.
【详解】
依题意,质量在82.5kg及以上的生猪有:(头)
故选B.
【点睛】
本题考查了频数直方图的应用,根据频数直方图获取信息是解题的关键.
6、D
【分析】
根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.
【详解】
解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
故选:D.
【点睛】
本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.
7、A
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵甲、乙的方差的分别为3.6、6.3,
∴甲的方差小于乙的方差,
∴甲秧苗出苗更整齐.
故选:A.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
8、D
【分析】
根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.
【详解】
∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,
从小到大排列为88,89,90,90,93,
∴平均数为,众数为90,中位数为90,
故选项A、B、C错误;
方差为,
故选项D正确.
故选:D.
【点睛】
本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.
9、C
【分析】
根据方差的计算公式中各数据的具体意义逐一分析求解即可.
【详解】
解:∵参赛选手比赛成绩的方差计算公式为:S2= [(x1−88)2+(x2−88)2+…+(x8−88)2],
∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,
故选:C.
【点睛】
本题主要考查方差,解题的关键是掌握方差的定义和计算公式.
10、C
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
二、填空题
1、15
【分析】
由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有个,可得,解之即可.
【详解】
解:设盒子中白球大约有个,
根据题意,得:,
解得,
经检验是分式方程的解,
所以估计盒子中白球大约有15个,
故答案为:15.
【点睛】
本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
2、5
【分析】
根据极差的概念,求解即可,一组数据的最大值与最小值的差为极差.
【详解】
解:根据极差的定义可得,这组数据的极差为
故答案为
【点睛】
此题考查了极差的求解,解题的关键是掌握极差的定义.
3、11
【分析】
根据极差=最大值-最小值求解可得.
【详解】
解:这组数据的最大值为19,最小值为8,
所以这组数据的极差为19-8=11,
故答案为:11.
【点睛】
本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.
4、18
【分析】
根据方差的计算公式计算即可.
【详解】
设,,,…,的平均数为,则2,2,2,…,2的平均数为2,
∵数据,,,…,的方差为4.5,
∴=,
∴
=
=
=18,
故答案为:18.
【点睛】
本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.
5、8 9
【分析】
根据平均数和方差的性质及计算公式直接求解可得.
【详解】
解:∵数据x1,x2,…xn的平均数是2,
∴数据3x1+2,3x2+2,…+3xn+2的平均数是3×2+2=8;
∵数据x1,x2,…xn的方差为1,
∴数据3x1,3x2,3x3,……,3xn的方差是1×32=9,
∴数据3x1+2,3x2+2,…+3xn+2的方差是9.
故答案为:8、9.
【点睛】
本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.
三、解答题
1、(1);(2)见解析;(3)B;(4)50.
【分析】
(1)首先根据B等级的人数和所占的百分比求出总人数,然后求出C等级的人数和所占的百分比,进而可求出C对应的扇形的圆心角的度数;
(2)根据(1)中求出的C等级的人数补全条形统计图即可;
(3)把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,根据题意求解即可;
(4)根据样本中A等级的人数和总人数可求出所占的百分比,即可求出九年级500名学生中A等级的学生人数.
【详解】
解:(1)∵B等级的人数是18,所占的百分比是,
∴总人数为(人),
∴C等级的人数为(人),
∴C等级的人数所占的百分比为,
∴C对应的扇形的圆心角是;
(2)由(1)可得,C等级的人数为13(人),
∴如图所示,
(3)由(1)可得,共有40名学生,
∴中位数为第20位学生和第21位学生成绩的平均数,
∵A等级有4人,B等级有18人,
∴第20位学生和第21位学生成绩都在B等级,
∴所抽取学生的足球运球测试成绩的中位数会落在B等级,
故答案是:B;
(4)∵A等级的学生有4人,总人数有40人,
∴A等级的人数所占的百分比为,
∴九年级500名学生中A等级的学生人数为(人).
【点睛】
此题考查了条形统计图和扇形统计图的综合运用,正确分析统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比大小.
2、(1)7.3,5.5,7,1.41;(2)选甲公司,理由见解析.
【分析】
(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;
(2)根据平均数,中位数及众数的大小和方差的大小进行选择即可.
【详解】
解:(1)甲公司平均月收入:a={5+6+7×4+8×2+9×[10×(1﹣10%﹣10%﹣40%﹣20%)]}=7.3(千元);
乙公司滴滴中位数为b==5.5(千元);
甲公司众数c=7(千元);
甲公司方差:d=[4×(7﹣7.3)2+2×(8﹣7.3)2+2×(9﹣7.3)2+(5﹣7.3)2+(6﹣7.3)2]=1.41;
故答案为:7.3,5.5,7,1.41;
(2)选甲公司,因为甲公司平均数,中位数、众数大于乙公司,且甲公司方差小,更稳定.
【点睛】
本题主要考查中位数、众数、平均数及方差,熟练掌握求一组数据的中位数、众数、平均数及方差是解题的关键.
3、(1)4.8节;(2)众数为4个,中位数为4.5节;(3)本次活动可减少受浸染的水3200000吨.
【分析】
(1)求出50名学生收集废旧电池的总数,再求平均数即可;
(2)从统计表格即可求得众数为5,然后按从大到小给所有数据排序,求出中位数即可;
(3)先求出这些电池可污染的水的数量即可解决问题.
【详解】
解:(1)50名学生平均每人收集废旧电池的节数=(10×3+15×4+12×5+7×6+6×8)÷50=4.8(节);
(2)从统计表格得,众数为4节;
由于收集3节和4节电池的人数有25个人,收集5节的人有12人,所以中位数=(4+5)÷2=4.5(节);
(3)样本中电池总数4.8×50=240,
由于本次收集的各种电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,
故可得出手机电池、7号电池、5号电池、1号电池与总数的比值分别为:
,,,,即,,,,
由于各种电池1节能污染水的量的比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,故可得手机电池、5号电池、1号电池一节分别能污染水的吨数为500×6,500×2,500×3,
故在50名学生收集的废电池可少受污染水的吨数为
=320000(吨)
320000÷50×500=3200000吨,
答:本次活动可减少受浸染的水3200000吨.
【点睛】
本题考查了从统计图中获取信息的能力;对平均数、中位数和众数等概念的掌握程度.同时通过此题倡导学生参加义务收集废旧电池活动中来.
4、(1)40;(2)补图见解析;(3)117°;(4)40人.
【分析】
(1)根据B等级的人数和所占的百分比即可得出答案;
(2)先求出C等级的人数,再补全统计图即可;
(3)用360°乘以D等级所占的比例即可;
(4)用该校的总人数乘以A等级的学生所占的比例即可.
【详解】
解:(1)本次模拟考试该班学生有:(人),
故答案为:40;
(2)C等级的人数有:(人),
补全统计图如下:
(3)扇形统计图中D等级对应扇形的圆心角的度数为:,
故答案为:117°;
(4)估计该校A等级的学生人数有:(人).
【点睛】
题目主要考查条形统计图和扇形统计图,包括画条形统计图,求扇形统计图的圆心角,用样本估计总体符合条件的人数等,理解题意,熟练将两个统计图结合获取信息是解题关键.
5、(1)见解析;(2)见解析
【分析】
(1)根据众数、平均数和中位数的定义求解:
(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
【详解】
解:(1)∵8出现了3次,出现的次数最多,
∴甲的众数为8,
乙的平均数=(5+9+7+10+9)=8,
把这些数从小到大排列5,7,9,9,10,则乙的中位数为9.
故填表如下:
| 平均数 | 众数 | 中位数 | 方差 |
甲 | 8 | 8 | 8 | 0.4 |
乙 | 8 | 9 | 9 | 3.2 |
故答案为:8,8,9;
(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.
【点睛】
本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.
北京课改版八年级下册第十七章 方差与频数分布综合与测试随堂练习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试随堂练习题,共19页。
2021学年第十七章 方差与频数分布综合与测试课堂检测: 这是一份2021学年第十七章 方差与频数分布综合与测试课堂检测,共19页。试卷主要包含了2020年某果园随机从甲,在这学期的六次体育测试中,甲,下列说法中正确的是.,为考察甲等内容,欢迎下载使用。
数学第十七章 方差与频数分布综合与测试课后练习题: 这是一份数学第十七章 方差与频数分布综合与测试课后练习题,共21页。试卷主要包含了2020年某果园随机从甲,在一次射击训练中,甲,在这学期的六次体育测试中,甲等内容,欢迎下载使用。