数学八年级下册第十七章 方差与频数分布综合与测试同步训练题
展开京改版八年级数学下册第十七章方差与频数分布定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )
A.平均数是89 B.众数是93
C.中位数是89 D.方差是2.8
2、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为( )
A. B. C. D.
3、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
4、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,则这四名学生的数学成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
5、小明3分钟共投篮80次,进了50个球,则小明进球的频率是( )
A.80 B.50 C.1.6 D.0.625
6、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,,,,这四个旅游团中年龄相近的旅游团是( )
A.甲团 B.乙团 C.丙团 D.丁团
7、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是( )
A.180 B.140 C.120 D.110
8、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是( )
| ||||
平均成绩(分) | 95 | 98 | 96 | 98 |
方差 | 3 | 3 | 2 | 2 |
A. B. C. D.
9、中学生骑电动车上学给交通安全带来隐患,为了了解某中学个学生家长对“中学生骑电动车上学”的态度,从中随机调查个家长,结果有个家长持反对态度,则下列说法正确的是( )
A.调查方式是普查 B.该校只是个家长持反对态度
C.样本是个家长 D.该校约有的家长持反对态度
10、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )
A.甲比乙稳定 B.乙比甲稳定
C.甲与乙一样稳定 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.
2、七年级(5)班20名女生的身高如下(单位:cm):
153 156 152 158 156 160 163 145 152 153
162 153 165 150 157 153 158 157 158 158
(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):
身高(cm) | 140~150 | 150~160 | 160~170 |
频数 |
|
|
|
百分比 |
|
|
|
(2)上表把身高分成___组,组距是___;
(3)身高在___范围的人数最多.
3、已知一组数据a、b、c、d、e的方差为,则新的数据2a﹣1、2b﹣1、2c﹣1、2d﹣1、2e﹣1的方差是 ______.
4、某舞蹈队8名队员的身高(单位:厘米)如下:163,164,164,165,165,166,166,167.计算这些队员的身高的方差记为S12,这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,再次计算所得身高的方差记为S22.则S12与S22的大小关系是___(选填“>”“<”或“=”).
5、新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.
| 甲 | 乙 | 丙 |
44 | 44 | 42 | |
1.7 | 1.5 | 1.7 |
三、解答题(5小题,每小题10分,共计50分)
1、甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:
选手 组数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | 98 | 90 | 87 | 98 | 99 | 91 | 92 | 96 | 98 | 96 |
乙 | 85 | 91 | 89 | 97 | 96 | 97 | 98 | 96 | 98 | 98 |
(1)根据上表数据,完成下列分析表:
| 平均数 | 众数 | 中位数 | 方差 | 极差 |
甲 | 94.5 |
| 96 | 16.65 | 12 |
乙 | 94.5 |
|
| 18.65 |
|
(2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么?
2、2021年9月起,重庆市各中小学为落实教育部政策,全面开展课后延时服务.某区教委为了了解该区中学延时服务的情况,随机抽查了甲、乙两中学各100名家长进行问卷调查.家长对延时服务的综合评分记为x,将所得数据分为5组(“很满意”:;“满意”:;“比较满意”:;“不太满意”:;“不满意”:;)区教委将数据进行分析后,得到如下部分信息:
a.甲中学延时服务得分情况扇形统计图
b.乙中学延时服务得分情况频数分布直方图
c.甲、乙两中学延时服务得分的平均数、中位数、众数如表:
学校 | 平均数 | 中位数 | 众数 |
甲 | 79 | 79 | 80 |
乙 | 85 | m | 83 |
d.乙中学“满意组”的分数从高到低排列,排在最后的10个数分别是:.
e.甲、乙两中学“满意组”的人数一样多.
请你根据以上信息,回答下列问题:
(1)直接写出a和m的值;
(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);
(3)区教委指出:延时服务综合得分在70分及以上才算合格,请你估计甲中学2000名家长中认为该校延时服务合格的人数.
3、为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.
载客量/人 | 组中值 | 频数(班次) |
1≤x<21 | 11 | 2 |
21≤x<41 | a | 8 |
41≤x<61 | b | 20 |
(1)求出表格中a=_______,b=______.
(2)计算该2路公共汽车平均每班的载客量是多少?
4、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的折线统计图如下:
(1) 请补充完成下面的成绩统计分析表:
| 平均分 | 方差 | 中位数 | 合格率 | 优秀率 |
甲组 | ( ) | 3.76 | ( ) | 90% | 30% |
乙组 | 7.2 | ( ) | 7.5 | 80% | 20% |
(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组;但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.
5、安岳县教育和体育局在全县中小学开展群文阅读活动,要求每人暑假假期阅读3-6本图书.活动结束后随机抽查了40名学生每人的阅读图书量,并将其分为四类:A:三本,B:四本,C:五本,D:六本,将各类的人数绘制成扇形统计图(图1)和条形统计图(图2),经确定扇形统计图是正确的,而条形统计图存在错误.
(1)请指出条形统计图中存在的错误,并说明理由;
(2)若该校有3000名学生,请估计全校共有多少名学生阅读量为B类.
(3)请计算D类学生在扇形统计图中的圆心角.
-参考答案-
一、单选题
1、D
【分析】
根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.
【详解】
∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,
从小到大排列为88,89,90,90,93,
∴平均数为,众数为90,中位数为90,
故选项A、B、C错误;
方差为,
故选项D正确.
故选:D.
【点睛】
本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.
2、A
【分析】
首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.
【详解】
解:∵打捞a条鱼,发现其中带标记的鱼有b条,
∴有标记的鱼占,
∵共有n条鱼做上标记,
∴鱼塘中估计有n÷=(条).
故选:A.
【点睛】
此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.
3、A
【分析】
根据方差的意义求解即可.
【详解】
解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,
∴S甲2<S乙2<S丙2<S丁2,
∴这四名学生的数学成绩最稳定的是甲,
故选:A.
【点睛】
本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.
4、A
【分析】
根据方差的意义求解即可.
【详解】
解:∵S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,
∴S甲2<S乙2<S丙2<S丁2,
∴这四名学生的数学成绩最稳定的是甲,
故选:A.
【点睛】
本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.
5、D
【分析】
根据频率等于频数除以数据总和,即可求解.
【详解】
∵小明共投篮80次,进了50个球,
∴小明进球的频率=50÷80=0.625,
故选D.
【点睛】
本题主要考查频数和频率,掌握“频率等于频数除以数据总和”是解题的关键.
6、B
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵S=6,S=1.8,S=5,S=8,
∴1.8<5<6<8
∴S最小,
∴这四个旅游团中年龄相近的旅游团是:乙团.
故选:B.
【点睛】
本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7、B
【分析】
根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.
【详解】
解:由直方图可得,
质量在77.5kg及以上的生猪:90+30+20=140(头),
故选B.
【点睛】
本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.
8、D
【分析】
先根据平均成绩选出,然后根据方差的意义求出
【详解】
解:根据平均数高,平均成绩好得出的性能好,
根据方差越小,数据波动越小可得出的性能好,
故选:D
【点睛】
本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键
9、D
【分析】
根据抽查与普查的定义以及用样本估计总体解答即可.
【详解】
解:.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;
.在调查的400个家长中,有360个家长持反对态度,该校只有个家长持反对态度,故本项错误,不符合题意;
.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;
.该校约有的家长持反对态度,本项正确,符合题意,
故选:D.
【点睛】
本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.
10、C
【分析】
先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.
【详解】
解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,
乙5天制作的个数分别为10、15、10、20、15,
∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,
∴甲、乙制作的个数稳定性一样,
故选:C.
【点睛】
本题主要考查了利用方差进行决策,准确分析判断是解题的关键.
二、填空题
1、0.15
【分析】
求出40~50元的人数,再根据频率=频数÷总数进行计算即可.
【详解】
解:“40~50元”的人数为:200−10−30−50−80=30(人),
“40~50元”的频率为:30÷200=0.15,
故答案为:0.15.
【点睛】
本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.
2、3
10 150~160
【分析】
(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;
(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;
(3)根据所填信息确定身高在哪个范围的人数最多即可.
【详解】
(1)填表:
身高(cm) | 140~150 | 150~160 | 160~170 |
频数 | 1 | 15 | 4 |
百分比 | 5% | 75% | 20% |
(2)上表把身高分成3组,组距是10;
(3)身高在范围最多.
【点睛】
本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.
3、
【分析】
根据方差的变化规律即可得出答案,即当数据都减去一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.
【详解】
解:∵数据a、b、c、d、e的方差是1.2,
∴数据2a−1、2b−1、2c−1、2d−1、2e−1的方差是22×1.2=4.8.
故答案为:4.8.
【点睛】
本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.
4、=
【分析】
根据方差的计算公式分别求出S12,S22,再比较即可.
【详解】
解:舞蹈队8名队员身高的平均数为:×(163+164×2+165×2+166×2+167)=165,
S12=×[(163−165)2+2×(164−165)2+2×(165−165)2+2×(166−165)2+(167−165)2]=1.5;
这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,所得数据为:166,167,167,168,168,169,169,170,
这组新数据的平均数为:×(166+167×2+168×2+169×2+170)=168,
S22=×[(166−168)2+2×(167−168)2+2×(168−168)2+2×(169−168)2+(170−168)2]=1.5;
∴S12=S22,
故答案为:=.
【点睛】
本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1−)2+(x2−)2+…+(xn−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5、乙
【分析】
先比较平均数得到甲和乙产量较高,然后比较方差得到乙比较稳定.
【详解】
解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,
又乙的方差比甲小,所以乙的产量比较稳定,
即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是乙;
故答案为:乙.
【点睛】
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.
三、解答题
1、(1)见解析;(2)选择甲选手参加比赛,理由见解析
【分析】
(1)分别根据众数、中位数和极差的概念填充表格即可;
(2)根据方差即可确定选择哪位选手参加比赛.
【详解】
解:(1)根据表中甲、乙两名选手的成绩可知甲、乙的成绩的众数均为98;
将乙选手的成绩从小到大排列可得:85,89,91,96,96,97,97,98,98,98,
∴乙的中位数为:;
乙选手成绩的极差为:98-85=13.
填充表格如下所示:
| 平均数 | 众数 | 中位数 | 方差 | 极差 |
甲 | 94.5 | 98 | 96 | 16.65 | 12 |
乙 | 94.5 | 98 | 96.5 | 18.65 | 13 |
(2)∵S甲2<S乙2,
∴甲的成绩比较稳定,
∴选择甲选手参加比赛.
【点睛】
本题考查了众数、中位数和极差的概念及方差在实际生活中的应用,利用方差可以确定数据的波动大小,也就是数据的稳定性,由此即可解决问题;同时该题的计算量比较大,要注意细心运算.
2、(1);;(2)见解析;(3)名
【分析】
(1)根据甲、乙两中学“满意组”的人数一样多得出甲组满意的人数为人,从而得出甲组满意所占总人数百分比,进而得出的值;根据中位数的计算方法得出乙组的中位数位于第和的平均数;
(2)根据平均数以及中位数进行分析即可;
(3)由甲组70分及以上所占百分比估算甲中学2000名家长中认为该校延时服务合格的人数即可.
【详解】
解:(1)∵甲、乙两中学“满意组”的人数一样多,
∴甲满意的人数为人,
∴甲满意的人数占甲组的百分比为:,
∴,
∴;
乙学校中位数为第名和名的平均数,
∴乙(中位数)=,
∴;
(2)从平均数来看,乙学校整体成绩高于甲学校整体成绩;
从中位数来看,乙学校的高分段人数较多;
综上:乙学校的延时服务开展得更好;
(3)甲中学70分及以上的百分比=,
(名),
答:甲中学2000名家长中认为该校延时服务合格的人数为名.
【点睛】
本题考查了扇形统计图,频数分布直方图,中位数,平均数,由部分估计总体等知识点,读懂题意,理解相关定义是解本题的关键.
3、(1)31;51;(2)43人.
【分析】
(1)利用组中值的计算方程直接计算即可得;
(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解即可.
【详解】
解:(1),
,
故答案为:31;51;
(2)(人),
答:该2路公共汽车平均每班的载客量是43人.
【点睛】
题目主要考查组中值及加权平均数的计算方法,理解题意,掌握组中值及加权平均数的计算方法是解题关键.
4、(1)甲组平均数为6.8,中位数为6,乙组方差为1.96;(2)见解析
【分析】
(1)由折线图中数据,根据中位数和加权平均数、方差的定义求解可得;
(2)可从平均数和中位数两方面阐述即可.
【详解】
解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,
∴其平均数为=6.8,中位数为6,
乙组成绩从小到大排列为:5、5、6、7、7、8、8、8、9、9,
∴乙组学生成绩的方差为=[2×(5-7.2)2+(6-7.2)2+2×(7-7.2)2+3×(8-7.2)2+2×(9-7.2)2]=1.96;
(2)①因为乙组学生的平均分高于甲组学生,所以乙组学生的成绩好于甲组;
②因为乙组学生的中位数高于甲组学生,所以乙组学生的成绩好于甲组;所以乙组学生的成绩好于甲队组.
【点睛】
本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.
5、(1)C项错误图书数应为12,理由见解析;(2)该校有3000名学生,估计全校共1200学生阅读量为B类;(3)D类学生在扇形统计图中的圆心角为.
【分析】
(1)依次计算每一项正确的数量,即可判断条形统计图的错误;
(2)利用样本估计总体的思想解决问题即可;
(3)用360°乘以“D”类人数所占比例即可;.
【详解】
解:(1)C项错误,学生数应为12,理由如下:
A类学生数是:,
B类学生数是:,
C类学生数是:,
D类学生数是:,
所以,C项错误,学生数应为12.
(2)该校有3000名学生,估计学生阅读量为B类人数:(人).
所以,该校有3000名学生,估计全校共1200学生阅读量为B类.
(3)D类学生在扇形统计图中的圆心角:.
所以,D类学生在扇形统计图中的圆心角为.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题,共20页。试卷主要包含了某校九年级,在一次射击训练中,甲,一组数据等内容,欢迎下载使用。
北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题,共21页。
北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题,共21页。试卷主要包含了下列说法中正确的是.等内容,欢迎下载使用。