北京课改版八年级下册第十七章 方差与频数分布综合与测试同步练习题
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s2=23.后来小颖进行了补测,成绩是92分,关于该班50人的数学测试成绩,下列说法正确的是( )
A.平均分不变,方差变小B.平均分不变,方差变大
C.平均分和方差都不变D.平均分和方差都改变
2、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()
A.14B.12C.9D.8
3、某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中不合格产品约为( )
A.50件B.500件C.5000件D.50000件
4、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( )组.
A.10B.9C.8D.7
5、在“5•18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是( )
A.调查的方式是普查
B.该街道约有18%的成年人吸烟
C.该街道只有820个成年人不吸烟
D.样本是180个吸烟的成年人
6、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.
对于小强做引体向上的个数,下列说法错误的是( )
A.平均数是12B.众数是13
C.中位数是12.5D.方差是
7、某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在82.5kg及以上的生猪有( )
A.20头B.50头C.140头D.200头
8、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( )
A.甲组B.乙组C.丙组D.丁组
9、甲,乙,丙,丁四个小组的同学分别参加了班级组织的中华古诗词知识竞赛,四个小组的平均分相同,其方差如下表.若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选( )
A.甲B.乙C.丙D.丁
10、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:
若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )
A.甲B.乙C.丙D.丁
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一组数据,,,…,的方差为4.5,则另一组数据2,2,2,…,2的方差为____.
2、一组数据:2021,2021,2021,2021,2021,2021的方差是______.
3、为了了解社区居民的用水情况,小江调查了80户居民,发现人均日用水量在基本标准量(50升)范围内的频率是0.75,那么他所调查的居民超出了标准量的有________户.
4、甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.2环,方差分别是,,,则三人中成绩最稳定的是______(填“甲”或“乙”或“丙”).
5、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.
三、解答题(5小题,每小题10分,共计50分)
1、 “中国梦”是中华民族每一个人的梦,各中小学开展经典诵读活动,是“中国梦”教育这一宏大乐章里的响亮音符某学校在经典诵读活动中,对全校学生用A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行评价,现从中抽取若干名学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)共抽取了多少名学生进行调查;
(2)将图甲中的条形统计图补充完整;
(3)求出图乙中D等级所对应的扇形圆心角的度数;
(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生获得B等级的评价.
2、某校随机抽取部分学生,对“学习习惯”进行问卷调查.设计的问题:对自己做错的题目进行整理、分析、改正;答案选项为:A.很少;B.有时;C.常常;D.总是.将调查结果的数据进行了整理、绘制成如图两幅不完整的统计图.
请根据图中信息,解答下列问题:
(1)填空:a= %,b= %;
(2)请你补全条形统计图;
(3)若该校有2000名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生各有多少名?
3、甲、乙两人在5次打靶测试中命中的环数如下:
甲:8,8,7,8,9;乙:5,9,7,10,9.
(1)填写表格;
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
4、戴头盔对保护骑电动车人的安全尤为重要,志愿者在某市随机抽取部分骑电动车的人就戴头盔情况进行调查(调查内容为:“很少戴头盔”、“有时戴头盔”、“常常戴头盔”、“总是戴头盔”),对调查数据进行了整理,绘制成部分统计图如下:
请根据图中信息,解答下列问题
(1)该调查的样本容量为 .
(2)请你补全条形统计图;并求出总是戴头盔的所占圆心角的大小;
(3)若该市有120万人骑电动车,请你估计其中“很少”戴头盔的有多少人?
5、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:
(1)该校抽查八年级学生的人数为 ,图中的值为 ;
(2)请将条形统计图补充完整;
(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;
(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?
-参考答案-
一、单选题
1、A
【分析】
根据平均数,方差的定义计算即可.
【详解】
解:∵小颖的成绩和其他49人的平均数相同,都是92分,
∴该班50人的测试成绩的平均分为92分,方差变小,
故选:A.
【点睛】
本题考查了方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
2、B
【分析】
根据样本频数直方图、样本容量的性质计算,即可得到答案.
【详解】
根据题意,第二组的频数是:
故选:B.
【点睛】
本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解.
3、C
【分析】
抽取的100件进行质检,发现其中有5件不合格,由此即可求出这类产品的不合格率是5%,然后利用样本估计总体的思想,即可知道不合格率是5%,即可求出该厂这10万件产品中不合格品的件数.
【详解】
解:∵某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,
∴不合格率为5÷100=5%,
∴估计该厂这10万件产品中不合格品约为10×5%=0.5万件,
故选C.
【点睛】
此题主要考查了样本估计总体的思想,此题利用样本的不合格率去估计总体的不合格率.
4、A
【分析】
求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
【详解】
解:145-50=95,
95÷10=9.5,
所以应该分成10组.
故选A.
【点睛】
本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
5、B
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;
这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,故C选项错误;
样本是1000个成年人是否吸烟,故D选项错误;
本地区约有18%的成年人吸烟是对的,故B选项正确.
故选:B.
【点睛】
本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键.
6、C
【分析】
根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.
【详解】
解:由题意得它们的平均数为:
,故选项A不符合题意;
∵13出现的次数最多,
∴众数是13,故B选项不符合题意;
把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,
∴中位数为12,故C选项符合题意;
方差:,故D选项不符合题意;
故选C.
【点睛】
本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.
7、B
【分析】
在横轴找到82.5kg的位置,由图可知在80与85的中间,即第三个与第三个长方形的前一个边界值开始算起,将后2组频数相加,即可求解.
【详解】
依题意,质量在82.5kg及以上的生猪有:(头)
故选B.
【点睛】
本题考查了频数直方图的应用,根据频数直方图获取信息是解题的关键.
8、B
【分析】
由平均数相同,根据方差越小越稳定可得出结论.
【详解】
解:∵4.3>4>3.6>3.2
∴,
∵四个小组的平均分相同,
∴乙组各成员实力更平均,
选择乙组代表年级参加学校决赛.
故选择B.
【点睛】
本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.
9、B
【分析】
根据方差的意义求解即可.
【详解】
解:由表格知,乙的方差最小,
所以若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选乙,
故选:B.
【点睛】
本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.
10、A
【分析】
首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定
【详解】
解:∵,
∴应在甲和丁之间选择,
甲和丁的平均成绩都为6.2,
甲的方差为0.25,丁的方差为0.32,
,
甲的成绩好且发挥稳定,故应选甲,
故选A.
【点睛】
本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.
二、填空题
1、18
【分析】
根据方差的计算公式计算即可.
【详解】
设,,,…,的平均数为,则2,2,2,…,2的平均数为2,
∵数据,,,…,的方差为4.5,
∴=,
∴
=
=
=18,
故答案为:18.
【点睛】
本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.
2、0
【分析】
根据方差的定义求解.
【详解】
∵这一组数据都一样
∴平均数为2021
∴方差=
故答案为:0.
【点睛】
本题考查方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
3、20
【分析】
根据频数等于总数乘以频率,即可求解.
【详解】
解:调查的居民超出了标准量的有 户.
故答案为:20.
【点睛】
本题主要考查了频数和频率,熟练掌握频率之和等于1,且频数等于总数乘以频率是解题的关键.
4、丙
【分析】
根据方差的定义,方差越小数据越稳定即可得出答案.
【详解】
解:∵S甲2=0.76,S乙2=0.71,S丙2=0.69,
∴S甲2>S乙2>S丙2,
∴三人中成绩最稳定的是丙.
故答案为:丙.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5、50 0.16
【分析】
根据总数等于频数除以总数,频率等于频数除以总数求解即可.
【详解】
依题意(人)
故答案为:
【点睛】
本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.
三、解答题
1、(1)100名;(2)图见解析;(3);(4)700.
【分析】
(1)根据等级的条形统计图和扇形统计图的信息即可得;
(2)根据(1)的结果,求出等级的学生人数,再补全条形统计图即可;
(3)利用乘以等级所占的百分比即可得;
(4)利用2000乘以等级所占的百分比即可得.
【详解】
解:(1)抽取调查的学生总人数为(名),
答:共抽取了100名学生进行调查;
(2)等级的人数为(名),
则补全条形统计图如下:
(3)图乙中等级所对应的扇形圆心角的度数为,
答:图乙中等级所对应的扇形圆心角的度数;
(4)(名),
答:估计有700名学生获得等级的评价.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键.
2、(1)12,36;(2)见解析;(3)720人
【分析】
(1)首先计算出抽查的学生总数,然后再计算a、b的值即可;
(2)计算出“常常”所对的人数,然后补全统计图即可;
(3)利用样本估计总体的方法计算即可.
【详解】
解:(1)调查总人数:(人),
,
,
故答案为:12,36;
(2)“常常”所对的人数:200×30%=60(人),
补全统计图如图所示:
;
(3)2000×30%=600(人),
2000×36%=720(人),
答:“常常”对错题进行整理、分析、改正的有600人,“总是”对错题进行整理、分析、改正的有720人.
【点睛】
本题考查条形统计图与扇形统计图的综合运用,熟练掌握抽样的各项数目、各项百分比、总数、各项圆心角及整体的各项数目、各项百分比、总数等的计算方法是解题关键.
3、(1)见解析;(2)见解析
【分析】
(1)根据众数、平均数和中位数的定义求解:
(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
【详解】
解:(1)∵8出现了3次,出现的次数最多,
∴甲的众数为8,
乙的平均数=(5+9+7+10+9)=8,
把这些数从小到大排列5,7,9,9,10,则乙的中位数为9.
故填表如下:
故答案为:8,8,9;
(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.
【点睛】
本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.
4、(1)200;(2)补全条形统计图见解析;“总是戴头盔”的所占圆心角为;(3)该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).
【分析】
(1)根据“常常戴头盔”的人数和所占的百分比求出调查的总人数,即可得到样本容量;
(2)用(1)中求出的样本总人数减去“很少戴头盔”、 “常常戴头盔”、“总是戴头盔”的人数即可求出“有时戴头盔”的人数;根据“总是戴头盔”的人数和样本总人数求出所占的百分比,然后即可求出所占圆心角的大小;
(3)首先求出“很少戴头盔”的人数在样本中所占的百分比,用样本估计总体即可估计出该市“很少戴头盔”的人数.
【详解】
(1)由扇形统计图和条形统计图可得,
“常常戴头盔”的人数为64人,所占的百分比为,
∴调查的样本总人数=,
∴样本容量为200,
故答案为:200;
(2)“有时戴头盔”的人数=(人),
补全条形统计图如下:
“总是戴头盔”的人数所占圆心角=;
(3)(万人),
∴该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).
【点睛】
此题考查了条形统计图和扇形统计图的相关知识,用样本估计总体,解题的关键是正确分析出条形统计图和扇形统计图中数据之间的关系.
5、(1)100,18;(2)见解析;(3)(4)72人
【分析】
(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;
(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;
(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数
(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为,400乘以18%即可求得.
【详解】
(1)总人数为:(人);
故答案为:
(2)每天平均课外阅读时间为1.5小时的人数为:(人)
补充条形统计图如下:
(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5
中位数为1.5,平均数为;
(4)(人)
估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有人
【点睛】
本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键.
星期
日
一
二
三
四
五
六
个数
11
12
10
13
13
13
12
甲
乙
丙
丁
方差
3.6
3.2
4
4.3
组名
甲
乙
丙
丁
方差
4.3
3.2
4
3.6
测试者
平均成绩(单位:m)
方差
甲
6.2
0.25
乙
6.0
0.58
丙
5.8
0.12
丁
6.2
0.32
平均数
众数
中位数
方差
甲
8
8
0.4
乙
9
3.2
平均数
众数
中位数
方差
甲
8
8
8
0.4
乙
8
9
9
3.2
北京课改版八年级下册第十七章 方差与频数分布综合与测试习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共20页。
北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题,共21页。
数学八年级下册第十七章 方差与频数分布综合与测试复习练习题: 这是一份数学八年级下册第十七章 方差与频数分布综合与测试复习练习题,共19页。试卷主要包含了在频数分布表中,所有频数之和,一组数据a-1等内容,欢迎下载使用。