数学八年级下册第十七章 方差与频数分布综合与测试同步训练题
展开京改版八年级数学下册第十七章方差与频数分布同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )
A.甲比乙稳定 B.乙比甲稳定
C.甲与乙一样稳定 D.无法确定
2、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( )
A.众数是 B.中位数是 C.平均数是 D.方差是
3、已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可分成( ).
A.11组 B.9组 C.8组 D.10组
4、为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2020年4月份用电量的调查结果:关于这15户居民月用电量(单位:度),下列说法错误的是( )
居民(户) | 5 | 3 | 3 | 4 |
月用电量(度/户) | 30 | 42 | 50 | 51 |
A.平均数是43.25 B.众数是30
C.方差是82.4 D.中位数是42
5、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )
A.样本中位数是200元
B.样本容量是20
C.该企业员工捐款金额的极差是450元
D.该企业员工最大捐款金额是500元
6、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
7、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )
周阅读用时数(小时) | 4 | 5 | 8 | 12 |
学生人数(人) | 3 | 4 | 2 | 1 |
A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是6
8、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.
星期 | 日 | 一 | 二 | 三 | 四 | 五 | 六 |
个数 | 11 | 12 | 10 | 13 | 13 | 13 | 12 |
对于小强做引体向上的个数,下列说法错误的是( )
A.平均数是12 B.众数是13
C.中位数是12.5 D.方差是
9、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196.现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高( )
A.平均数变小,方差变小 B.平均数变小,方差变大
C.平均数变大,方差变小 D.平均数变大,方差变大
10、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )
A., B., C., D.,
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在方差计算公式中,可以看出15表示这组数据的______________.
2、据统计,某车间10名员工每人日平均生产零件个数为6,方差为2.5,引入新技术后,每名员工每日都比原先多生产1个零件,则现在日平均生产零件个数为 ___,方差为 ___.
3、一组数据6,2,1,3的极差为__________.
4、小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是,,那么两人中射击成绩比较稳定的是_________.
5、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.
三、解答题(5小题,每小题10分,共计50分)
1、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图
根据图中提供的信息,解决下列问题:
(1)此次共调查了 名学生;
(2)请补全类条形统计图;
(3)扇形统计图中.类所对应的扇形圆心角的大小为 度;
(4)该校共有1560名学生,估计该校表示“很喜欢”的类的学生有多少人?
2、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有多少人?
3、甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):
甲:10,7,8,7,8,8
乙:5,6,10,8,9,10
(1)甲成绩的众数_________,乙成绩的中位数_________.
(2)计算乙成绩的平均数和方差;
(3)已知甲成绩的方差是1环,则_________的射击成绩离散程度较小.(填“甲”或“乙”)
4、为加强安全教育,某校开展了“预防水,珍爱生命”安全知识竞赛,现从七,八,九年级学生中随机抽取了50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行了整理和分析,部分信息如下:
a.参赛学生成绩频数分布直方图(数据分成五组:,,,,)如图所示;
b.参赛学生成绩在这一组的具体得分是:70,71,73,75,76,76,76,77,77,78,79.
c.参赛学生成绩的平均数、中位数、众数如下:
平均数 | 中位数 | 众数 |
76.9 | m | 80 |
d.参赛学生甲的竞赛成绩得分为79分.
根据以上信息,回答下列问题:
(1)在这次竞赛中,成绩在75分以上的有______人;
(2)表中m的值为______.
(3)该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数.
5、数学小组对当地甲、乙两家网约车公司司机的月收入情况进行了抽样调查.两家公司分别随机抽取10名司机,他们的月收入(单位:千元)情况如图所示.
将以上信息整理分析如下:
| 平均数 | 中位数 | 众数 | 方差 |
甲公司 | a | 7 | c | d |
乙公司 | 7 | b | 5 | 7.6 |
(1)填空:a=_____;b=_____;c=_____;d=_____;
(2)某人计划从甲、乙公司中选择一家做网约车司机,你建议他选哪家公司?说明理由.
-参考答案-
一、单选题
1、C
【分析】
先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.
【详解】
解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,
乙5天制作的个数分别为10、15、10、20、15,
∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,
∴甲、乙制作的个数稳定性一样,
故选:C.
【点睛】
本题主要考查了利用方差进行决策,准确分析判断是解题的关键.
2、D
【分析】
根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可
【详解】
根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7
其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;
这组数据的中位数为:6,故B选项正确,不符合题意;
这组数据的平均数为,故C选项正确,不符合题意;
这组数据的方差为:,故D选项不正确,符合题意.
故选D.
【点睛】
本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:.
3、A
【分析】
据组数=(最大值-最小值)÷组距计算即可得解,注意小数部分要进位.
【详解】
解:由组数=(最大值-最小值)÷组距可得:
组数=(140-40)÷10+1=11,
故选择:A
【点睛】
本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.
4、A
【分析】
根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.
【详解】
解:15户居民2015年4月份用电量为30,30,30,30,30,42,42,42,50,50,50,51,51,51,51,
平均数为×(30+30+30+30+30+42+42+42+50+50+50+51+51+51+51)=42,
中位数为42;
众数为30,
方差为 ×[5×(30﹣42)2+3×(42﹣42)2+3×(50﹣42)2+4×(51﹣42)2]=82.4.
故B、C、D正确.
故选:A.
【点睛】
本题考查的是平均数,中位数,众数,方差,熟练掌握平均数,中位数,众数,方差的定义是解题关键.
5、A
【详解】
解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;
B、共20人,样本容量为20,故选项B正确;
C、极差为500﹣50=450元,故选项C正确;
D、该企业员工最大捐款金额是500元,故选项D正确.
故选:A .
【点睛】
本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.
6、C
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
7、D
【分析】
根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.
【详解】
解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
故选:D.
【点睛】
本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.
8、C
【分析】
根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.
【详解】
解:由题意得它们的平均数为:
,故选项A不符合题意;
∵13出现的次数最多,
∴众数是13,故B选项不符合题意;
把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,
∴中位数为12,故C选项符合题意;
方差:,故D选项不符合题意;
故选C.
【点睛】
本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.
9、A
【分析】
分别计算出原数据和新数据的平均数和方差即可得.
【详解】
解:原数据的平均数为=192.8,
则原数据的方差为[(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2]=4.512,
新数据的平均数为=192,
则新数据的方差为[(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2]=4,
所以平均数变小,方差变小,
故选:A.
【点睛】
本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式.
10、C
【分析】
直接利用样本容量的定义以及结合频数除以总数=频率得出答案.
【详解】
解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,
∴此抽样样本中,样本容量为:100,
不合格的频率是:=0.08.
故选:C.
【点睛】
本题主要考查了频数与频率,正确掌握频率求法是解题关键.
二、填空题
1、平均数
【分析】
方差是由每个数据与平均值的差的平方之和除以总数得到,由此判断即可.
【详解】
解:根据方差计算公式可知,公式中15是这组数据的平均数,
故答案为:平均数.
【点睛】
本题考查方差公式的理解,理解方差公式中每个数据的含义是解题关键.
2、7 2.5
【分析】
新数据是在原数据的基础上分别加上1所得,据此新数据的平均数在原数据平均数基础上加1,数据的波动幅度不变.
【详解】
解:根据题意,新数据是在原数据的基础上分别加上1所得,
所以现在日平均生产零件个数为6+1=7,方差为2.5,
故答案为:7;2.5.
【点睛】
本题主要考查方差和平均数,解题的关键是根据题意得出新数据是在原数据的基础上分别加上1所得,据此新数据的平均数在原数据平均数基础上加1,数据的波动幅度不变.
3、5
【分析】
根据极差的概念,求解即可,一组数据的最大值与最小值的差为极差.
【详解】
解:根据极差的定义可得,这组数据的极差为
故答案为
【点睛】
此题考查了极差的求解,解题的关键是掌握极差的定义.
4、小刘
【分析】
根据方差的意义即可求出答案.
【详解】
解:由于S小刘2<S小李2,且两人10次射击成绩的平均值相等,
∴两人中射击成绩比较稳定的是小刘,
故答案为:小刘
【点睛】
本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,熟练运用方差的意义是解题的关键.
5、11
【分析】
根据极差=最大值-最小值求解可得.
【详解】
解:这组数据的最大值为19,最小值为8,
所以这组数据的极差为19-8=11,
故答案为:11.
【点睛】
本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.
三、解答题
1、(1)60;(2)补全统计图见详解;(3);(4)估计该校表示“很喜欢”的A类的学生有260人.
【分析】
(1)C类学生占比25%,根据条形统计图的数据可得C类学生有15人,由此计算总人数即可;
(2)计算得出D类学生人数,根据D类学生人数补全条形统计图即可;
(3)根据前面的结论,计算出B类人数占总调查人数的比值,将计算结果乘即可得出扇形圆心角的度数;
(4)利用调查样本所占的百分比估计总体学生数即可.
【详解】
解:(1)此次调查学生总数:(人),
故答案为:60;
(2)D类人数为:(人),
补全条形统计图,如图所示,
(3)扇形统计图中,B类所对应的扇形圆心角的大小为:,
故答案为:;
(4)(人).
∴估计该校表示“很喜欢”的A类的学生有260人.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.
2、(1)100;(2)见解析;(3)600
【分析】
(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;
(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;
(3)利用样本估计总体即可估计爱好运动的学生人数.
【详解】
解:(1)爱好运动的人数为,所占百分比为
共调查人数为:,
故答案为:;
爱好上网的人数所占百分比为
爱好上网人数为:,
爱好阅读人数为:,
补全条形统计图,如图所示,
(3)爱好运动的学生人数所占的百分比为,
估计爱好运用的学生人数为:,
故答案为:;
【点睛】
本题考查统计的基本知识,样本估计总体,解题的关键是正确利用两幅统计图的信息.
3、(1)8,;(2)乙的平均数,方差;(3)甲
【分析】
(1)根据众数的定义可得甲成绩的众数,将乙成绩重新排列,再根据中位数的定义求解即可;
(2)根据算术平均数和方差的定义求解即可;
(3)比较甲乙成绩的方差,比较大小后,依据方差的意义可得答案.
【详解】
解:(1)甲打靶的成绩中8环出现3次,次数最多,
所以甲成绩的众数是8环;
将乙打靶的成绩重新排列为5、6、8、9、10、10,
所以乙成绩的中位数为,
故答案为:8、8.5;
(2)乙成绩的平均数为,
方差为;
(3)甲成绩的方差为1环,乙成绩的方差为环,
甲成绩的方差小于乙,
甲的射击成绩离散程度较小.
【点睛】
本题主要考查方差,解题的关键是掌握算术平均数、众数、中位数及方差的意义.
4、(1)30;(2)77.5;(3)810
【分析】
(1)参赛学生成绩频数分布直方图,可得75分以上的有 人,即可求解;
(2)根据题意可得位于第25位,第26位的分别为77、78,即可求解;
(3)用1500乘以成绩超过平均数76.9分的人数所占的百分比,即可求解.
【详解】
(1)在这次竞赛中,成绩在75分以上的有 人;
(2)∵位于第25位,第26位的分别为77、78,
∴中位数为 ,
即表中m的值为77.5;
(3)该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数:(人),
答:估计成绩超过平均数76.9分的人数是810人.
【点睛】
本题主要考查了频数分布直方图,求中位数,用样本估计总体,明确题意,能从频数分布直方图获取准确信息是解题的关键.
5、(1)7.3,5.5,7,1.41;(2)选甲公司,理由见解析.
【分析】
(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;
(2)根据平均数,中位数及众数的大小和方差的大小进行选择即可.
【详解】
解:(1)甲公司平均月收入:a={5+6+7×4+8×2+9×[10×(1﹣10%﹣10%﹣40%﹣20%)]}=7.3(千元);
乙公司滴滴中位数为b==5.5(千元);
甲公司众数c=7(千元);
甲公司方差:d=[4×(7﹣7.3)2+2×(8﹣7.3)2+2×(9﹣7.3)2+(5﹣7.3)2+(6﹣7.3)2]=1.41;
故答案为:7.3,5.5,7,1.41;
(2)选甲公司,因为甲公司平均数,中位数、众数大于乙公司,且甲公司方差小,更稳定.
【点睛】
本题主要考查中位数、众数、平均数及方差,熟练掌握求一组数据的中位数、众数、平均数及方差是解题的关键.
北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂达标检测题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂达标检测题,共24页。试卷主要包含了下列说法中正确的是.等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步练习题: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步练习题,共22页。
北京课改版八年级下册第十七章 方差与频数分布综合与测试练习: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共20页。试卷主要包含了一组数据1等内容,欢迎下载使用。