![2022年强化训练京改版八年级数学下册第十七章方差与频数分布月考试题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12703345/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练京改版八年级数学下册第十七章方差与频数分布月考试题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12703345/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练京改版八年级数学下册第十七章方差与频数分布月考试题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12703345/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中第十七章 方差与频数分布综合与测试练习
展开
这是一份初中第十七章 方差与频数分布综合与测试练习,共23页。试卷主要包含了一组数据1等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是( ) 平均成绩(分)95989698方差3322A. B. C. D.2、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差甲6.20.25乙6.00.58丙5.80.12丁6.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )A.甲 B.乙 C.丙 D.丁3、2020年某果园随机从甲、乙、丙、丁四个品种的苹果树上各采摘了10棵.每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如下表所示: 甲乙丙丁25252421s22.22.02.12.0今年准备从这四个品种中选出一种产量既高又稳定的苹果树进行种植.应选的品种是( )A.甲 B.乙 C.丙 D.丁4、年将在北京--张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,选手成绩更稳定的是( )A.甲 B.乙 C.都一样 D.不能确定5、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是( )A. B. C. D.6、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是( )A.平均数 B.中位数 C.众数 D.方差7、一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是( )A.众数 B.平均数 C.中位数 D.方差8、小明同学对数据15,28,36,4□,43进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则统计结果与被涂污数字无关的是( )A.平均数 B.标准差 C.中位数 D.极差9、若样本的平均数为10,方差为2,则对于样本,下列结论正确的是( )A.平均数为30,方差为8 B.平均数为32,方差为8C.平均数为32,方差为20 D.平均数为32,方差为1810、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示: 甲乙丙平均数/分969597方差0.422丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A.甲 B.乙 C.丙 D.丁第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.2、一组数据5,8,x,10,4的平均数为2x,则x=_____,这组数据的方差为_____.3、数据1,3,2,5和x的平均数是3,则这组数据的方差是____________.4、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名运动员参加决赛,最合适的运动员是______. 甲乙平均数368320方差2.55.6 5、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.三、解答题(5小题,每小题10分,共计50分)1、甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下: 平均成绩中位数众数方差甲a771.2乙7b8c根据以上信息,整理分析数据如下:(1)填空:a= ;b= ;c= ;(2)从平均数和中位数的角度来比较,成绩较好的是 ;(填“甲”或“乙”)(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由.2、社会主义核心价值观是社会主义核心价值体系最核心的体现,践行社会主义核心价值观也是每一名中学生的责任.某校开展了社会主义核心价值观演讲比赛,学校在演讲比赛活动中,对全校学生用A、B、C、D四个等级进行评分,现从中随机抽取m名学生进行调查,绘制出了如下两幅不完整的统计图.请你根据图中的信息回答下列问题:(1) ;(2)将图甲中的条形统计图补充完整;(3)图乙中A等级所占圆心角的度数为 .3、为庆祝中国共产党建党100周年,某中学组织七、八年级全体学生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).收集数据:七年级:90,95,95,80,85,90,80,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90.整理数据: 80859095100七年级22321八年级124a1分析数据: 平均数中位数众数方差七年级8990e八年级c90d30根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过计算求出e的值;(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(4)该校七八年级共1600人,本次竞赛成绩不低于90分的为“优秀”,估计这两个年级共多少名学生达到“优秀”?4、某校组织1000名学生参加“展示我美丽祖国 ”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表分数段频数百分比80≤x<85a20%85≤x<9080b90≤x<956030%95≤x<10020 根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a ,b ;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.5、数学小组对当地甲、乙两家网约车公司司机的月收入情况进行了抽样调查.两家公司分别随机抽取10名司机,他们的月收入(单位:千元)情况如图所示.将以上信息整理分析如下: 平均数中位数众数方差甲公司a7cd乙公司7b57.6(1)填空:a=_____;b=_____;c=_____;d=_____;(2)某人计划从甲、乙公司中选择一家做网约车司机,你建议他选哪家公司?说明理由. -参考答案-一、单选题1、D【分析】先根据平均成绩选出,然后根据方差的意义求出【详解】解:根据平均数高,平均成绩好得出的性能好,根据方差越小,数据波动越小可得出的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键2、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵,∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,,甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.3、B【分析】首先比较平均数,平均数较高的是甲和乙,进而根据方差比较选出方差较小的即可.【详解】根据表格可知甲、乙的平均数较高,则表示产量高,比较甲、乙的方差,乙的方差比甲小,则乙品种的苹果树产量高又稳定,故选B.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.4、A【分析】分别计算计算出甲乙选手的方差,根据方差越小数据越稳定解答即可.【详解】解:甲选手平均数为:,乙选手平均数为:,甲选手的方差为:,乙选手的方差为: ∵可得出:,则甲选手的成绩更稳定,故选:A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D.【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.6、D【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得:原来的平均数为,加入数字2之后的平均数为,∴平均数没有发生变化,故A选项不符合题意;原数据处在最中间的两个数为2和2,∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,∴新数据的中位数为2,故B选项不符合题意;原数据中2出现的次数最多,∴原数据的众数为2,新数据中2出现的次数最多,∴新数据的众数为2,故C选项不符合题意;原数据的方差为,新数据的方差为,∴方差发生了变化,故D选项符合题意;故选D.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.7、A【分析】依据平均数、中位数、众数、方差的定义即可得到结论.【详解】解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;故选:A.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.8、C【分析】利用中位数、平均数、标准差和极差的定义对各选项进行判断.【详解】解:五个数据从小到大排列为:15,28,36,4□,43或15,28,36,43,4□,∴这组数据的平均数、标准差和极差都与被涂污数字有关,而两种排列方式的中位数都是36,∴计算结果与被涂污数字无关的是中位数.故选:C.【点睛】本题考查了中位数、平均数、标准差和极差,解决本题的关键是掌握中位数、平均数、标准差和极差的定义.9、D【分析】由样本的平均数为10,方差为2,可得再利用平均数公式与方差公式计算的平均数与方差即可.【详解】解: 样本的平均数为10,方差为2, 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.10、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意,丁同学的平均分为:,方差为:;∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D.【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题1、15【分析】由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有个,可得,解之即可.【详解】解:设盒子中白球大约有个,根据题意,得:,解得,经检验是分式方程的解,所以估计盒子中白球大约有15个,故答案为:15.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.2、3 6.8 【分析】本题可用求平均数的公式解出x的值,在运用方差的公式解出方差.【详解】解:∵数据5,8,x,10,4的平均数是2x,∴5+8+x+10+4=5×2x,解得x=3,=2×3=6,s2= [(5﹣6)2+(8﹣6)2+(3﹣6)2+(10﹣6)2+(4﹣6)2]=×(1+4+9+16+4)=6.8.故答案为3,6.8.【点睛】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键3、2【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…xn的平均数为 , (x1+x2+…+xn),则方差 .【详解】解:x=5×3-1-3-2-5=4,s2= [(1-3)2+(3-3)2+(2-3)2+(5-3)2+(4-3)2]=2.故答案为:2.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为 , (x1+x2+…+xn),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、甲【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵甲的平均数比乙的平均数大,
甲的方差小于乙的方差,
∴最合适的运动员是甲.
故答案为:甲.【点睛】此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、50 0.16 【分析】根据总数等于频数除以总数,频率等于频数除以总数求解即可.【详解】依题意(人)故答案为:【点睛】本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.三、解答题1、(1)7;7.5;4.2;(2)乙;(3)选择乙参加比赛,理由见解析【分析】(1)根据平均数公式计算甲,利用中位数先把以成绩从低到高排序,取中间两个成绩7、8的平均数,利用方差公式求c即可;(2)根据平均数两者均为7,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,(3)甲乙平均数相同,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,从方差看乙的方差大于甲,只说明乙的成绩没有甲稳定,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,乙队员要比甲队员参赛好.【详解】解:(1)甲的平均成绩为乙的成绩从低到高排列为:3,4,6,7,7,8,8,8,9,10,所以中位数==4.2故答案为:7,7.5,4.2.(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,故答案为:乙;(3)选择乙参加比赛,理由:从平均数上看,甲、乙平均成绩相等,总分相等,从中位数上看乙的中位数和众数都大于甲,说明乙的成绩好于甲,从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定,从众数看乙的众数是8,甲的众数是7,说明乙成绩要好些,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,故应选乙队员参赛.【点睛】本题考查条形统计数,折线统计图,统计表获取信息以及处理信息,中位数,平均数,方差,利用集中趋势的量与离散程度的量进行决策是解题关键.2、(1)50;(2)见详解;(3)108°.【分析】(1)用C等级的人数除以C等级所占的百分比即可得到抽取的总人数;(2)先用总数50分别减去A、C、D等级的人数得到B等级的人数,即可把条形统计图补充完整;(3)用360°乘以A等级所占的百分比即可得到A等级所占圆心角的度数;【详解】解:(1)10÷20%=50,∴,所以抽取了50个学生进行调查;故答案为:50;(2)B等级的人数=5015105=20(人),补全统计图如下:(3)图乙中A等级所占圆心角的度数=360°×=108°;故答案为:108°.【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.3、(1)a=2,b=90,c=90,d=90;(2)31;(3)八年级的学生成绩好,理由见解析;(4)1040人【分析】(1)通过八年级抽取人数10人,即可得到a,根据中位数、平均数、众数的定义得到b、c、d;(2)根据方差的计算公式,求解即可;(3)由于中位数和众数相同,通过分析平均数和方差即可得到答案;(4)根据抽取的人中,不低于90分的比例即可得到两个年级共多少名学生达到“优秀”.【详解】解:(1)观察八年级95分的有2人,故a=2;七年级成绩按从小到大顺序排列为80,85,85,85,90,90,90,95,95,100,七年级的中位数为,故b=90;八年级的平均数为:,故c=90;八年级中90分的最多,故d=90;(2)七年级的方差;(3)八年级的学生成绩好,理由如下:七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,综上,八年级的学生成绩好;(4)∵(人),∴估计该校七、八年级这次竞赛达到优秀的有1040人.【点睛】本题考查了中位数、众数、方差、平均数,以及样本估计总体,审清题中数据并了解基本的定义是解题的关键.4、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)用20除以样本容量即可求得的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数.【详解】解:(1)∵抽查的学生总数为:(人),∴;,故答案为:40;40%;(2)成绩在的学生人数所占百分比为:,故频数分布表为:分数段频数百分比80≤x<854020%85≤x<908040%90≤x<956030%95≤x<1002010%频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:(人),答:估计该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键.5、(1)7.3,5.5,7,1.41;(2)选甲公司,理由见解析.【分析】(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;(2)根据平均数,中位数及众数的大小和方差的大小进行选择即可.【详解】解:(1)甲公司平均月收入:a={5+6+7×4+8×2+9×[10×(1﹣10%﹣10%﹣40%﹣20%)]}=7.3(千元);乙公司滴滴中位数为b==5.5(千元);甲公司众数c=7(千元);甲公司方差:d=[4×(7﹣7.3)2+2×(8﹣7.3)2+2×(9﹣7.3)2+(5﹣7.3)2+(6﹣7.3)2]=1.41;故答案为:7.3,5.5,7,1.41;(2)选甲公司,因为甲公司平均数,中位数、众数大于乙公司,且甲公司方差小,更稳定.【点睛】本题主要考查中位数、众数、平均数及方差,熟练掌握求一组数据的中位数、众数、平均数及方差是解题的关键.
相关试卷
这是一份初中数学第十七章 方差与频数分布综合与测试课后测评,共21页。试卷主要包含了数学老师将本班学生的身高数据,篮球队5名场上队员的身高等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试综合训练题,共21页。试卷主要包含了在一次投篮训练中,甲等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题,共21页。试卷主要包含了下列说法正确的是,一组数据等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)