初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题
展开京改版八年级数学下册第十七章方差与频数分布定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s2=23.后来小颖进行了补测,成绩是92分,关于该班50人的数学测试成绩,下列说法正确的是( )
A.平均分不变,方差变小 B.平均分不变,方差变大
C.平均分和方差都不变 D.平均分和方差都改变
2、如表是某次射击比赛中10名选手的射击成绩(环):
射击成绩(环) | 6 | 7 | 8 | 9 | 10 |
人数(人) | 1 | 2 | 4 | 2 | 1 |
关于这10名选手的射击环数,下列说法不正确的是( )
A.众数是8 B.中位数是5 C.平均数是8 D.方差是1.2
3、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
4、在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是( )
A.甲. B.乙 C.丙 D.丁
5、对于一列数据(数据个数不少于6),如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是( )
A.平均数 B.中位数 C.众数 D.方差
6、2020年某果园随机从甲、乙、丙、丁四个品种的苹果树上各采摘了10棵.每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如下表所示:
| 甲 | 乙 | 丙 | 丁 |
25 | 25 | 24 | 21 | |
s2 | 2.2 | 2.0 | 2.1 | 2.0 |
今年准备从这四个品种中选出一种产量既高又稳定的苹果树进行种植.应选的品种是( )
A.甲 B.乙 C.丙 D.丁
7、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是( )
A.该班共有学生60人
B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内
C.某同学身高155厘米,那么班上恰有10人比他矮
D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%
8、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,则这四名学生的数学成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
9、中学生骑电动车上学给交通安全带来隐患,为了了解某中学个学生家长对“中学生骑电动车上学”的态度,从中随机调查个家长,结果有个家长持反对态度,则下列说法正确的是( )
A.调查方式是普查 B.该校只是个家长持反对态度
C.样本是个家长 D.该校约有的家长持反对态度
10、一组数据:1,3,3,4,5,它们的极差是( )
A.2 B.3 C.4 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小亮是一位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频率是________.
2、八年级(1)、(2)两班人数相同,在同一次数学单元测试中,班级平均分和方差如下:则成绩较为稳定的班级是___.
3、为了了解社区居民的用水情况,小江调查了80户居民,发现人均日用水量在基本标准量(50升)范围内的频率是0.75,那么他所调查的居民超出了标准量的有________户.
4、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg种子中发芽的大约有_______kg.
5、已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为、,则___.(填“”、“”、“”)
三、解答题(5小题,每小题10分,共计50分)
1、为了迎接2022年高中招生考试,师大附中外国语学校对全校八年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:
(1)在这次调查中,被抽取的学生的总人数为多少?
(2)请将表示成绩类别为“中”的条形统计图补充完整:
(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是 .
(4)学校八年级共有400人参加了这次数学考试,把成绩类别“优”与“中”的划成“上线生”,估计该校八年级共有多少名学生的数学成绩能“上线”?
2、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;
(2)将条形统计图补充完整;
(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?
3、随着经济的发展,我们身边的环境受到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:
废旧电池数/节 | 3 | 4 | 5 | 6 | 8 |
人数/人 | 10 | 15 | 12 | 7 | 6 |
(1)这50名学生平均每人收集废旧电池多少节?
(2)这组废旧电池节数的中位数,众数分别是多少?
(3)根据统计发现,本次收集的各种废旧电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?
4、在精准扶贫的政策下,某贫困户在当地政府的支持和帮助下办起了养殖业,经过一段时间的精心饲养,总量为6000只的一批兔子达到了出售标准,现从这批兔中随机选择部分进行称重,将得到的数据用下列统计图表示(频数分布直方图每组含前一个边界值,不含后一个边界值).根据以上信息,解答下列问题:
(1)补全图中的频数分布直方图;
(2)估计这批兔子中质量不小于1.7kg的有多少只.
5、近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图:
组别 | A | B | C | D |
时间t(分钟) | t<40 | 40≤t<60 | 60≤t<80 | 80≤t<100 |
人数 | 12 | 30 | a | 24 |
(1)求出本次被调查的学生数;
(2)请求出统计表中a的值;
(3)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.
-参考答案-
一、单选题
1、A
【分析】
根据平均数,方差的定义计算即可.
【详解】
解:∵小颖的成绩和其他49人的平均数相同,都是92分,
∴该班50人的测试成绩的平均分为92分,方差变小,
故选:A.
【点睛】
本题考查了方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
2、B
【分析】
根据众数、中位数、平均数及方差的定义逐一计算可得答案.
【详解】
解:这组数据中8出现次数最多,即众数为8;
其中位数是第5、6个数据的平均数,故其中位数为;
平均数为,
方差为,
故选:B.
【点睛】
本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.
3、B
【分析】
根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.
【详解】
众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.
故选:B
【点睛】
本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.
4、A
【分析】
根据方差的意义,即可求解.
【详解】
解:∵S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75
∴
∴成绩最稳定的是甲
故选A
【点睛】
此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.
5、B
【分析】
根据中位数不受极端值的影响即可得.
【详解】
解:由题得,去掉了一组数据的极端值,中位数不受极端值的影响,
故选B.
【点睛】
本题考查了一组数的特征数据,解题的关键是掌握平均数,中位数,众数,方差.
6、B
【分析】
首先比较平均数,平均数较高的是甲和乙,进而根据方差比较选出方差较小的即可.
【详解】
根据表格可知甲、乙的平均数较高,则表示产量高,比较甲、乙的方差,乙的方差比甲小,则乙品种的苹果树产量高又稳定,
故选B.
【点睛】
本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.
7、B
【分析】
由两幅统计图的数据逐项计算判断即可.
【详解】
解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;
根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;
根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;
根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;
故选B.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
8、A
【分析】
根据方差的意义求解即可.
【详解】
解:∵S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,
∴S甲2<S乙2<S丙2<S丁2,
∴这四名学生的数学成绩最稳定的是甲,
故选:A.
【点睛】
本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.
9、D
【分析】
根据抽查与普查的定义以及用样本估计总体解答即可.
【详解】
解:.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;
.在调查的400个家长中,有360个家长持反对态度,该校只有个家长持反对态度,故本项错误,不符合题意;
.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;
.该校约有的家长持反对态度,本项正确,符合题意,
故选:D.
【点睛】
本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.
10、C
【分析】
根据极差的定义,即一组数据中最大数与最小数之差计算即可;
【详解】
极差是;
故选C.
【点睛】
本题主要考查了极差的计算,准确计算是解题的关键.
二、填空题
1、0.75
【分析】
根据频率=频数÷总数进行求解即可.
【详解】
解:∵小亮在10分钟之内罚球20次,共罚进15次,
∴小亮点球罚进的频率是,
故答案为:0.75.
【点睛】
本题主要考查了根据频数求频率,熟知频率=频数÷总数是解题的关键.
2、甲班
【分析】
根据平均数相同,方差反应一组数据与平均数的离散程度越小说明比较稳定即可得出结论.
【详解】
解:∵两班的平均成绩相同,,根据方差反应一组数据与平均数的离散程度越小说明比较稳定,
∴成绩较为稳定的班级是甲班,
故答案为甲班.
【点睛】
本题考查平均数与方差,掌握平均数的求法与方差的求法,熟练方差反应一组数据与平均数的离散程度,方差越大离散的程度越大,方差越小离散程度越小,越稳定,与整齐等是解题关键.
3、20
【分析】
根据频数等于总数乘以频率,即可求解.
【详解】
解:调查的居民超出了标准量的有 户.
故答案为:20.
【点睛】
本题主要考查了频数和频率,熟练掌握频率之和等于1,且频数等于总数乘以频率是解题的关键.
4、850
【分析】
根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.85左右,据此求出1000kg种子中大约有多少kg种子是发芽的即可.
【详解】
解:∵大量重复试验发芽率逐渐稳定在0.85左右,
∴1000kg种子中发芽的种子的质量是:1000×0.85=850(kg)
故答案为:850.
【点睛】
此题主要考查了频率的应用,解题的关键是根据题意列出式子进行求解.
5、>
【分析】
先计算两组数据的平均数,再计算它们的方差,即可得出答案.
【详解】
解:甲射击的成绩为:6,7,7,7,8,8,9,9,9,10,
乙射击的成绩为:6,7,7,8,8,8,8,9,9,10,
则甲= ×(6+7×3+8×2+9×3+10)=8,
乙=×(6+7×2+8×4+9×2+10)=8,
∴S甲2=×[(6-8)2+3×(7-8)2+2×(8-8)2+3×(9-8)2+(10-8)2]
=×[4+3+3+4]
=1.4;
S乙2=×[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]
=×[4+2+2+4]
=1.2;
∵1.4>1.2,
∴S甲2>S乙2,
故答案为:>.
【点睛】
题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
三、解答题
1、(1)50(人);(2)10(人),图形见详解;(3)72°.(4)160(人).
【分析】
(1)利用成绩为良的人数以及百分比求出总人数即可.
(2)求出成绩为中的人数,画出条形图即可.
(3)根据圆心角=360°×百分比即可.
(4)先求出抽查中上线的百分比,用样本的百分比含量估计总体的数量解决问题即可.
【详解】
解:(1)总人数=22÷44%=50(人).
(2)中的人数=50−10−22−8=10(人),
条形图如图所示:
(3)表示成绩类别为“优”的扇形所对应的圆心角的度数=360°×=72°,
故答案为72°.
(4)抽查中成绩类别“优”与“中”的划成“上线生”有10+10=20(人),
∴抽查中成绩类别“优”与“中”的划成“上线生”百分比为:
学校八年级共有400人参加了这次数学考试,估计该校八年级优秀人数为400×40%=160(人).
【点睛】
本题考查条形统计图和扇形统计图信息获取与处理,样本容量,扇形圆心角,补画条形统计图,用样本的百分比含量估计总体中的数量,解题的关键是掌握从条形统计图和扇形统计图中信息读取的能力.
2、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.
【分析】
(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;
(2)把条形统计图补充完整即可;
(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.
【详解】
解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),
则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),
∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×=108°,
故答案为:40,108°;
(2)把条形统计图补充完整如下:
(3)1400×=350(名),
即估计该校大约有350名学生在这次竞赛中成绩优秀.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
3、(1)4.8节;(2)众数为4个,中位数为4.5节;(3)本次活动可减少受浸染的水3200000吨.
【分析】
(1)求出50名学生收集废旧电池的总数,再求平均数即可;
(2)从统计表格即可求得众数为5,然后按从大到小给所有数据排序,求出中位数即可;
(3)先求出这些电池可污染的水的数量即可解决问题.
【详解】
解:(1)50名学生平均每人收集废旧电池的节数=(10×3+15×4+12×5+7×6+6×8)÷50=4.8(节);
(2)从统计表格得,众数为4节;
由于收集3节和4节电池的人数有25个人,收集5节的人有12人,所以中位数=(4+5)÷2=4.5(节);
(3)样本中电池总数4.8×50=240,
由于本次收集的各种电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,
故可得出手机电池、7号电池、5号电池、1号电池与总数的比值分别为:
,,,,即,,,,
由于各种电池1节能污染水的量的比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,故可得手机电池、5号电池、1号电池一节分别能污染水的吨数为500×6,500×2,500×3,
故在50名学生收集的废电池可少受污染水的吨数为
=320000(吨)
320000÷50×500=3200000吨,
答:本次活动可减少受浸染的水3200000吨.
【点睛】
本题考查了从统计图中获取信息的能力;对平均数、中位数和众数等概念的掌握程度.同时通过此题倡导学生参加义务收集废旧电池活动中来.
4、(1)见解析;(2)960只
【分析】
(1)先根据D组的频数和占比求出抽取兔子的数量,然后求出C组兔子的数量,最后补全统计图即可;
(2)先求出样本中这批兔子中质量不小于1.7kg的百分比,然后估计总体即可.
【详解】
解:(1)抽取兔子的数量是,
则质量在“C”部分的兔子数量是(只).
补全频数分布直方图如下:
(2)由题意得:这批兔子中质量不小于1.7kg的大约有(只).
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,补全条形统计图,解题的关键在于能够正确理解题目所示的统计图.
5、(1)120人;(2)54;(3)1560人
【分析】
(1)用A组的频数除以它上的百分比得到调查的总人数;
(2)用调查的总人数分别减去A组、B组、D组的频数得到a的值;
(3)用2400乘以样本中C、D两组的频率之和可估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.
【详解】
解:(1)由统计表可知,A级学生数是12人,由扇形图可知,A级学生所占的百分比是10%,
则本次被调查的学生数为:12÷10%=120人;
(2)a=120﹣12﹣30﹣24=54;
(3)2400×[1﹣(10%+25%)]=1560,
所以估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数为1560人.
【点睛】
本题考查了用样本估计总体:用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
北京课改版八年级下册第十七章 方差与频数分布综合与测试习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共20页。
北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题,共22页。试卷主要包含了已知一组数据的方差s2=[,下列说法中正确的是.,为考察甲等内容,欢迎下载使用。
北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题,共21页。